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Abstract 

This paper deals with the modelling of punching shear failure in reinforced concrete 

slabs using non-linear finite element analysis. An analytical procedure is presented 

for simulating punching failure. The procedure is validated for a large scale 

reinforced concrete flat slab without shear reinforcement that failed in punching. A 

parametric analysis is carried out to determine the influence of the key parameters 

which govern performance. The analytical procedure is then used to model the 

response of a large-scale hybrid reinforced concrete flat slab specimen tested at 

Imperial College London which failed in punching. The specimen incorporated a 

tubular steel column and an ACI 318 type structural steel shearhead. The results of 

the analysis are used to gain fundamental insights into the contribution of the 

shearhead to the shear resistance, and to assess the reliability of existing design 

recommendations for structural steel shearheads. 
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1. INTRODUCTION 

The concrete constitutive models typically used in non-linear finite element analysis 

(NLFEA) can be broadly categorised as: a) plasticity models, b) damage continuum 

models and c) coupled plasticity and damage models. Cracking can be modelled with 

either discrete or smeared crack approaches. Discrete crack approaches are complex 

since the mesh becomes discontinuous after cracking due to node separation. This 

requires the fracture process zone of the propagating crack to be adaptively re-meshed 

in order to capture near crack tip singularities. The difficulties of re-meshing are 

avoided in the extended finite element method (XFEM), which is based on the 

concept of partition of unity (Belytschko and Black [1]) and the smeared crack 

approach of Hillerborg et al. [2] amongst others.  The smeared crack approach can be 

further divided into fixed, rotating, multiple fixed and micro-plane models. Numerous 

investigators including Abbasi et al. [3], Dyngeland et al [4] Xia and O’Flaherty [5], 

Hallgren and Bjerke [6] and Zheng et al. [7] have modelled punching shear with 

varying degrees of success using both solid and shell elements. Available studies in 

the literature show that numerical modelling of punching shear failure involves 

complex considerations that require further investigation. It is clear that the 

constitutive model for concrete should reasonably reflect its tri-axial behaviour since 

punching is a three-dimensional problem. Furthermore, as expected, solid elements 

would predict the response more accurately than shell elements. There do not appear 

to be any significant differences, however, between the performance of plasticity and 

damage based models. The predicted response appears to be very dependent on the 

assumed tension softening behaviour which is commonly modelled using the 

equivalent fracture energy approach. Importantly, the shear retention factor requires 

careful consideration in fixed crack models. Investigators such as Hallgren and Bjerke 
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[6] have used rotating crack models to eliminate the shear retention factor and avoid 

shear stress locking in cracks.  

 

2. NUMERICAL MODELLING 

The commercially available finite element program DIANA v9 [8] was used to carry 

out the numerical analyses described in this paper. The concrete behaviour was 

modelled with the ‘total strain model’ (TS-model) in DIANA which is based on the 

modified compression field theory of Vecchio & Collins [9] and its 3-D extension by 

Selby & Vecchio [10]. The model is a non-local elastic continuum damage model 

based on the concept of hypo-elasticity. The stress increments are calculated in terms 

of strain increments according to klijklij dCd    where Cijkl is defined as a function of 

stress, strain, fracture criteria, loading/unloading parameters and others. In this 

context, klijijkl CC  , which means that the stress-strain relationship is load path 

dependent. Unloading and reloading were modelled with a secant approach.  

 

2.1 Concrete compressive behaviour 

The concrete compressive behaviour was described with the following parabolic 

hardening and softening relationship proposed by Feenstra [11]:  
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The three characteristic strains c/3, c and u are defined as follows: 
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where εc denotes the peak strain, εu is the ultimate strain, fc is the concrete 

compressive strength, E is the elastic modulus, Gc denotes the fracture energy in 

compression and h is the characteristic length or crack-bandwidth. 

The area below the softening part of the compressive stress-strain curve equals 

Gc/h. The compressive fracture energy Gc is difficult to measure due to its strong 

dependency on testing procedure but appears to be 100-500 times greater than the 

tensile fracture energy Gf. Little advice is available in the literature on the choice of 

Gc. However, the failure loads of the models analysed in this paper are largely 

insensitive to Gc which was varied between 100 Gf  and 200Gf in this work. 

The increase in concrete compressive strength with isotropic stress was 

modelled with the four-parameter Hsieh-Ting-Chen [12] (equation (8)) failure surface 

which is used in the Selby and Vecchio [10] model to determine the major 

compressive stress 3  required to cause failure. This stress is assumed to be the peak 

stress of the base curve defined in Equations (1)-(4). The peak strain is also modified 

depending on the peak stress factor defined in equation (9). 
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where I1 denotes the first invariant of the stress tensor, J2 the second invariant of the 

deviatoric stress tensor, σ1 is the maximum principal stress and fc is the uniaxial 

compressive strength. The material constants a=2.0108, b=0.9714, c=9.1412 and 

d=0.2312 were calibrated with data from material tests. The reduction in compressive 

strength due to lateral cracking was modelled in accordance with the 

recommendations of Vecchio & Collins [9]. 

The current work uses a secant implementation of the total strain model in 

which the concrete is considered as an orthotropic material with 0ij (Equation 10). 

The symmetry of the material stiffness matrix retains the symmetry of the global 

stiffness matrix which is desirable from a computational point of view.  
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where the secant moduli are functions of the stress and strain tensor in the principal 

coordinate system as follows: 
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where i  are total strains including non stress-related strains (due to prestressing, 

thermal expansion, etc.). 

The Poisson’s ratio of a material determines the lateral displacement of a 

specimen subjected to uniaxial tensile or compressive loading. A passive lateral 

confinement acts on the specimen if these displacements are constrained. This effect 

is important in the three-dimensional modelling of reinforced concrete structures. In 

the work of Selby and Vecchio [10], this effect is modelled through a pre-strain 

concept in which the lateral expansion effects are accounted for with an additional 

external loading on the structure.  

 

2.2 Smeared crack concept 

A smeared fixed crack model was used in the current work in which the stress-strain 

relationships were evaluated in the directions of the principal axes at first cracking 

(Rankine failure criterion). The crack direction was fixed upon cracking and stresses 

were calculated in terms of total strains. Up to two further crack planes can form 

perpendicular to the initial crack plane in 3D analyses. The crack bandwidth defines 

the length over which the crack width w is smeared at every integration point within 

the element. This ensures that the cracking process at the integration point always 

releases the same amount of fracture energy independently of the element size. 

Theoretically, the crack bandwidth depends not only on the element size but also on 

its shape, the orientation of the crack within the element and the integration scheme.  

In this work, the crack band width was taken as the characteristic length 3 Vh   (V= 

volume of the element) for simplicity.  
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A constant shear retention factor   was used in the current work to model the 

reduction in shear stiffness in the post crack regime. The shear moduli (equation 12) 

are reduced after cracking according to crG = G  with 10   .  

 

2.3 Concrete Tensile Behaviour 

The unconfined uniaxial tensile stress-strain diagram is defined in terms of the 

concrete tensile strength ft and its fracture energy in tension Gf. The stress-strain 

relationship was assumed to be linear in tension until cracking. Gf is a material 

constant equal to the amount of energy required to create one unit area of crack 

surface which is defined as follows: 
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nn denotes the post-peak crack stress and cr

nn  denotes the crack strain. 

The ultimate tensile strain at which the tensile stress reaches zero cr
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computed as follows: 
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where Gf depends on the concrete strength and the aggregate size. The following 

equation from MC90 [13] was used to estimate Gf in this work: 
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where dmax is the maximum aggregate size, fcm is the mean concrete compressive 

strength and fcm0=10 MPa.  The coefficient α in equation (14) is defined as follows: 

dxxy

x

x
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where y(x) is the assumed tension softening function.  

 

3. PUNCHING SHEAR BEHAVIOUR OF RC-FLAT SLAB SUB 

ASSEMBLAGE 

The numerical model was validated for a slab without shear reinforcement tested in 

punching by Vollum et al [14]. The slab (see Fig. 1) measured 3m square by 220mm 

thick and was centrally loaded from the bottom through a 270mm square steel plate. 

The slab was vertically restrained by 16 ties positioned around its perimeter as shown 

in Fig. 1. The tensile reinforcement consisted of T16 bars at 90mm centres in each 

orthogonal direction. The compression reinforcement consisted of T10 bars at 180mm 

centres in each orthogonal direction. The mean concrete cube strength was 

fcu=30MPa. The concrete cylinder strength was taken as 0.8fcu = 24 MPa in 

accordance with MC90 [13]. The maximum aggregate size was 20mm. The cover to 

the top and bottom reinforcement was 35mm. 

One quarter of the specimen was modelled with the gradated mesh shown in 

Fig. 2 which is refined around the loading platen. Seven elements were used through 

the depth of the slab. The reinforcement was modelled with discrete truss elements 

assuming perfect bond. The horizontal displacements were restrained in the X and Y 

directions perpendicular to the axes of symmetry. The slab was vertically restrained 

around its perimeter at the positions of the tie down bars. The concrete and loading 

plates were modelled with 20-noded isoparametric brick elements. The reinforcement 
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was modelled with 3-noded 3D cable elements and the struts were modelled with 2- 

noded 3D truss elements. The concrete was modelled with the TS-fixed crack model, 

the plates and struts were assumed to be linearly elastic and the reinforcement was 

modelled as elasto-plastic with the Von-Mises yield criterion. The total number of 

elements was 10459 and the total number of nodes was 39942. A full 3x3x3 

integration scheme was adopted for the solid elements within the zone where the 

mesh was refined around the column. A 2x2x2 reduced integration scheme was used 

elsewhere. 

 

3.1 Methodology 

A quasi-Newton (secant) iteration solution procedure was used with an iterative based 

step size solver. The slabs were loaded in two-phases to simulate the test procedure. 

The slab self-weight was activated in the first phase of the analysis in which the slab 

was supported on the central loading platen.  The elements representing the steel 

bearing plates at the edge of the slab were activated in the second phase of the 

analysis along with the corresponding vertical restraints. Load control was used in the 

first phase and displacement control subsequently. The vertical displacement was 

assumed to be zero at the centre of the bearing plates whereas in reality the rig was 

designed to ensure that the vertical reactions were equally distributed between the 16 

restraining tie bars placed around the perimeter of the slab. An energy based 

convergence criterion was used with a tolerance value of 1×10
-3

.  

 

3.2 Baseline analysis 

A baseline analysis was carried out with the concrete material parameters listed in 

Table 1 which are discussed in the sensitivity studies presented below. Fig. 3 



 10 

compares the measured and predicted load displacement responses for slab S1. The 

slab was predicted to fail at a load of 642 kN compared with the measured failure load 

of 614 kN. The deviation between the measured and predicted capacity is 4.4% with a 

6.5% deviation in displacements.  

 

3.3 Sensitivity studies 

A series of sensitivity studies were undertaken in which one parameter was varied at a 

time with all the other parameters held constant at the values given in Table 1. The 

sensitivity study examined the effect of varying all the input parameters but results are 

only presented for the concrete tensile strength, tension softening relationship, shear 

retention factor and mesh density which were found to be most significant. It is useful 

to discuss the results of the sensitivity study with reference to the idealised load 

displacement diagram shown in Fig. 4 which is divided into four zones. The response 

is linear elastic in Zone 1 prior to cracking. In Zone 2, radial cracks initially form 

around the column, followed by circumferential cracks, both of which cause a distinct 

softening of the structure. The response is almost linear in Zone 3 which is 

characterised by the propagation of existing cracks through the depth of the slab with 

only a few new cracks being initiated. The load-displacement graph flattens at failure 

which occurs in Zone 4 and is characterised by unstable crack propagation under 

constant load. The tensile reinforcement typically de-bonds in Zone 4 as the tensile 

cracks propagate along the interface between the reinforcement and the concrete 

below eventually leading to total failure.  
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3.3.1 Concrete tensile strength 

The concrete tensile strength was varied between 1.0 and 3.0 MPa whilst maintaining 

the other material parameters at the values used in the base study. The results are 

presented in Fig. 5 which shows that increasing the concrete tensile strength from 1.0 

to 3.0 MPa affected the displacements much more significantly than the failure load. 

Fig. 5 shows that increasing the concrete tensile strength delayed the crack initiation 

and reduced displacements by shifting the load displacement curve to the left whilst 

maintaining the slope of load displacement curve in Zone 3. The concrete tensile 

strength of 1.5MPa used in the baseline analysis is around 60% of the splitting 

strength calculated with MC90 [13]
 
but similar to that given by the following equation 

from ACI 209 Model Code [15]: 

ct fwf 0069.0    [MPa]                                         (18) 

where w is the concrete density in kg/m
3
and fc is the concrete cylinder strength.  

 The concrete tensile strength of 1.5 MPa used in the baseline analysis 

corresponds to ct ff 30.0 and is similar to the tensile strength of fct=0.33fc
1/2

  

recommended by Bresler & Scordelis [16] for the NLFEA of shear failure in beams 

and subsequently used by Vecchio and Shim [17] amongst others. The tensile 

strengths used in the analysis are also comparable with the results obtained by Lee et 

al. [18]
 
in a series of direct tension tests on large-scale normal-weight concrete 

specimens (specimen size = 1400mm long × 1100mm wide x 250mm thick) in which 

they found that the direct tensile strength was about half the indirect tensile strength 

of cylindrical specimens. The direct tensile strengths ft [Mpa] measured in Lee et al.’s 

[16] tests ranged from ct ff 27.0 to ct ff 37.0  with a mean of ct ff 30.0 which 

is comparable with the strengths given by equation (18). The authors’ suggest that the 
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concrete tensile strength should be taken between 45-60% of the indirect concrete 

tensile strength in NLFEA of punching shear.  

 

3.3.2 Concrete tension softening response 

The effect of varying the softening response was investigated by carrying out analyses 

on slab S1 with brittle (Gf=0), perfectly-plastic (Gf= ∞), linear, exponential and 

Hordijk [19] tension softening functions.  The other material parameters had the 

values used in the base study. The brittle and constant softening responses were 

chosen to represent extreme lower and upper limits. The ultimate crack strain was 

chosen to make the area under the tensile stress crack strain curve equal to Gf/h in the 

linear, exponential and Hordijk [19] models. The exponential softening function can 

be expressed as follows: 








 eff tt )(                                                     (19) 

t

f

hf

G
                                          (20) 

 

where  denotes the tensile crack strain. The exponential softening function was found 

to be more stable numerically than the linear or Hordijk [19] tension softening 

responses since the strength asymptotically approaches zero. The brittle tension 

softening model was the least stable. 

Fig. 6 shows that the assumed tension softening behaviour has a significant 

effect on the overall performance. Flexural failure occurred when the concrete tensile 

stress was maintained at the concrete tensile strength after cracking. The shear 

strength of the tested slab was significantly underestimated when the concrete was 

assumed to be brittle in tension with the stress dropping immediately to zero after 
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cracking and there was no sign of the softening Zone 2 in the load-displacement 

response.  Fig. 6 shows that the area under the tension softening diagram should be 

related to Gf/h as in the linear, exponential and Hordijk [19] models. Significantly, the 

shape of the softening diagram had no significant influence on the predicted 

performance in the present study. 

 

3.3.3 Shear retention factor β 

The literature gives no definitive guidance on the best choice of β since its affect 

varies with structural form, reinforcement arrangement and the chosen concrete 

constitutive model. For example, the shear retention factor has no influence on the 

failure load or deformation of a single isotropically reinforced quadrilateral element 

loaded in pure shear since the shear stress parallel to the crack is zero. Such an 

element fails in tension when the maximum principal stress exceeds its tensile 

strength (τmax= σ1= ft) with the post-failure response being governed by the assumed 

tension softening response. An isotropic element is only influenced by when loaded 

in pure shear if the element is pre-cracked with the cracks skew to the principal 

compressive stress field for pure shear. In this case, the slope of the load displacement 

diagram is proportional to β. A series of axi-symmetric analyses were made to 

investigate the effect of varying  on punching shear capacity. The results showed 

that increasing  increases the failure load by delaying the fracture process and, 

thereby, alleviating the shear stresses in the uncracked concrete.  Increasing  had 

progressively less effect on the failure capacity as the flexural reinforcement ratio was 

reduced and no effect in plain concrete punching specimens. 

The study was then extended to investigate the effect of varying  from 0.01 

to 1.0 on the response of Slab S1. The other material parameters were unchanged 
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from the values used in the base study (see Table 1). The results are shown in Fig. 7 

which shows that the failure load increased by almost 100% as  was increased from 

0.01 to 1.0. Furthermore, increasing  had relatively little effect on the slope of the 

load deflection response within Zone 3 (see Fig. 4 for definition) but increased the 

length of Zone 3.  

The best choice of  seems to depend on many factors including the type of 

structure and its failure mode in addition to the concrete properties and software 

formulation. Rots [18] recommends that relatively low shear retention factors should 

be used in fixed crack models to avoid stress locking. The optimum value of  is 

problem dependent as discussed above and needs to be investigated on a case by case 

basis. The best choice of  was found to be in the range 25.01.0   in the current 

work, which is within the range reported by other researchers [18]. 

 

3.3.4 Mesh density 

In the “original” mesh (see Fig. 2), seven layers of elements were used through the 

depth of the slab. The smallest elements measured 22.5x22.5mm on plan x12mm 

thick and the largest measured 90x90x43mm. Seven layers of elements were also used 

in the “coarse mesh” in which the dimensions of the elements around the column were 

increased from 22.5x22.5mm to 45x45mm on plan. No other changes were made to 

the mesh which included 10045 nodes and 3064 elements. The “fine depth” mesh had 

the same element dimensions on plan as the “original” mesh but the number of layers 

of elements was increased from three to five between the reinforcement layers giving 

a total of nine layers of elements with 50174 nodes and 12909 elements. 

Fig. 8 shows that the performance of the model was objective in the sense that 

the numerical results converged as the mesh was refined and that decreasing the mesh 
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density increased the failure capacity. The coarse mesh gave an overly stiff response 

in both the pre-and post-damage regimes due to discretisation errors which led, 

initially, to delays in crack initiation and, subsequently, to variations in crack strain 

concentrations from denser meshes. The computational efficiency was found to 

reduce significantly, in the present study, when the number of nodes was increased 

above around 40000. Therefore, the baseline mesh was adopted for the parametric 

studies since it gave very similar results to the fine mesh (see Fig. 8) but significantly 

shorter runtimes.  

 

4. EXPERIMENTAL RESPONSE OF HYBRID FLAT SLAB SYSTEM 

A large scale hybrid flat slab was tested in the structural laboratories at Imperial 

College London as part of an investigation into punching shear failure. The specimen 

(H1) was attached to a steel column with an ACI 318 [21] type structural steel 

shearhead made from pairs of 51x38 rolled steel channels welded back to back. The 

specimen measured 3270mm × 2900mm on plan with a slab depth of 155mm. Details 

of the specimen and flexural reinforcement are given in Figs. 9 and 10 respectively. 

T12 bars at 100mm centres were used in each orthogonal direction for the tension 

reinforcement and T12 bars at 200mm centres for the compression reinforcement.  

The mean concrete cube and split cylinder tensile strengths were fcu= 47.4 

MPa and ft-split=3.3 MPa respectively. The concrete cylinder strength was taken as 

0.8fcu = 38 MPa in the analysis. The average yield strength of the steel in the 51×38 

RSC was measured in coupon tests to be 300 MPa. Stress strain curves for RSC and 

the 12mm diameter flexural reinforcement bars are given in Figs. 9c and 9d 

respectively. The strains were measured with a video extensometer in the material 

tests and with surface mounted electrical resistance strain gauges in the tested slab. 
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The cover was 20mm to the top and bottom reinforcement. The column 

consisted of a 180x180x10 square hollow section. The connection between the 

shearhead and column was strengthened with 8 mm thick polygonal shaped gusset 

plates which were fillet welded to the top and bottom flanges of the channel sections. 

The gusset plates were designed to prevent local buckling of the column by smoothly 

transferring forces from the flanges of the shearhead into the column. The shearhead 

was centrally embedded in the slab between the four layers of reinforcement. The slab 

edges (see Fig. 9) were supported with 4 pin ended members, which were connected 

to bearing beams made from pairs of PFC-180 channels that distributed the reaction 

forces along the slab edges. 

 

4.1 Test results 

The load was applied from the bottom in 100 kN steps. At each load step, cracks were 

marked, crack widths were measured at three locations above the shear arms and 

surface strains were measured with a DEMEC gauge. Radial cracks, which 

propagated from the column, were first observed at a load of 100kN. Tangential 

cracks were first observed at a load of 200kN. A regular crack pattern developed as 

the load increased and the slab failed in punching at a load of 453kN (see Fig. 11). 

The failure perimeter was much larger than predicted by ACI 318 [21] when viewed 

from above. It seems likely that a smaller and steeper punching cone developed inside 

the slab within the externally visible failure perimeter and that the shear crack 

changed direction when it reached the tensile reinforcement. The compressive surface 

was completely intact at failure. The yellow dotted line in Fig. 11 represents the 

assumed extension of the visible failure perimeter, based on acoustic examination. Fig 

12 shows the shearhead at the end of the test after it was extracted from the specimen. 
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The permanent deformation suggests that the shearhead arms deformed plastically 

before punching failure occurred.  

 

4.2 Numerical model 

One quarter of the specimen was modelled with the finite element mesh shown in Fig. 

13 which included 10509 elements and 39411 nodes. The mesh was refined in plan 

around the column and included 8 layers of elements through the slab depth. The 

influence of mesh refinement was investigated for slab H1 amongst others. The 

analyses showed that the mesh should be refined around the shear arms as shown in 

Fig. 13a with the zone of mesh refinement extending beyond the tips of the shear 

arms, by around twice the slab depth, if shear failure occurs outside the shearhead. 

Full (3×3×3) integration should be used within the refined zone of the mesh to avoid 

convergence problems. The model cannot capture punching shear failure if the mesh 

is too coarse in which case flexural failure is almost always predicted.   

The steel sections were modelled with 6 noded triangular and 8 noded quadrilateral 

Mindlin-Reissner isoparametric shell elements. A 3x3x3 integration scheme was used 

in the refined zone of the mesh around the column and in the shell elements. A 2x2x2 

integration scheme was used elsewhere. Horizontal displacements were restrained in 

the X and Y directions perpendicular to the axes of symmetry with the shell elements 

restrained with additional rotational restraints. The slab was restrained vertically 

around its perimeter at the tie locations shown in Fig. 9a. Finally the centre point of 

the bottom column plate was restrained in the X, Y and Z directions. Perfect bond was 

assumed between the shearhead and the concrete. The Von-Mises yield criterion with 

linear isotropic hardening was adopted for the shearhead. Results are presented for: a) 

a baseline analysis in which  and fct were chosen to give a good fit with the measured 
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load-displacement response and b) a “sensitivity” analysis in which the material 

parameters were either the same or had the same relationship with the concrete 

cylinder strength as in the baseline analysis of Slab S1. Table 2 shows the concrete 

material properties and shear retention factors used in the “sensitivity” and “best fit” 

analyses for slab H1. The use of the same concrete tensile strength in the “best fit” 

analyses for slabs S1 and H1 is coincidental and at first sight unexpected since slabs 

S1 and H1 had concrete cylinder compressive strengths of 24 and 38 MPa 

respectively. It should however be noted that the tensile strength of 1.5 MPa used in 

the “best fit” analyses is relatively close to the value of 1.89 MPa calculated for the 

“sensitivity” analysis of slab H1 (see Table 2) in terms of the concrete compressive 

strength. Furthermore, deflections depend on test specific factors such as the loading 

rate and the effective insitu concrete tensile strength, which is affected by curing and 

reduced by tensile stresses induced by restrained shrinkage. The concrete elastic 

moduli of 13.5 GPa and 21.1 GPa used in the analyses of slabs S1 and H1 

respectively were calculated with equation (6) assuming that the concrete reached its 

uniaxial cylinder strength at a strain c= -0.003. Parametric studies were carried out to 

investigate the effect of varying c between -0.002 and -0.003 where c is the uniaxial 

strain at the peak stress fc. The failure load was found to be virtually insensitive to c 

which was taken as -0.003 for slabs S1 and H1 since this gave the best estimates of 

slab deflection. The concrete elastic moduli used in the analyses of slabs S1 and H1 

respectively are a consequence of taking c as -0.003 in equation (6). The concrete 

elastic modulus is estimated to have been around 25 GPa for slab S1 which is rather 

higher than used in the NLFEA. Three companion control cylinders were tested to 

determine the elastic modulus for slab H1. The resulting mean concrete stress-strain 

curve was linear up to a stress of around 0.4fc with an elastic modulus of 29 GPa. The 



 19 

concrete reached its peak stress at a strain of c= -0.0023. The secant moduli used in 

the NLFEA of slab H1 were ~73% of the measured values for stresses up to fc, 

primarily due to the choice of c= -0.003 in equation (6). The good correspondence 

between the measured and predicted deflections for slabs S1 and H1 suggests that the 

elastic moduli used in the analyses are reasonable for the tested slabs.  The reduced 

effective concrete elastic modulus in the slabs is largely attributable to the effect of 

creep and loss of tension stiffening under sustained load whilst cracks were marked 

after each loading increment. The reduction in stiffness would have been 

proportionally greatest for slab S1 due to its low concrete strength.  

 

4.3 Comparative Results 

Fig. 14 shows that the baseline load-displacement response agrees well with the 

measured response. The shear strength was overestimated in the “sensitivity” analysis 

primarily due to the increase in  from 0.1 to 0.25. This shows that the “best fit” input 

parameters for the finite element analysis vary with changes in model geometry 

largely since  is a structural rather than material parameter. For a given concrete 

compressive strength, default values can be used for all the parameters in Tables 1 

and 2 except the concrete tensile strength and the shear retention factor which have 

the most significant effect on the load-displacement response. A “best fit” can be 

obtained with test data by choosing a) the concrete tensile strength to match the load-

deflection response within Zone 2 of Fig. 4 and b) the shear retention factor to match 

the measured failure load. The authors [14] have shown elsewhere that once validated 

for a particular test setup the numerical procedure can, for given  and fct, reliably 

predict the effect of changing the area of flexural reinforcement and adding shear 

reinforcement. The failure load of 432 kN computed in the baseline analysis is 5% 
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less than the measured failure load of 453 kN. The computed displacement is 6% less 

than measured at failure. First yielding of the tensile reinforcement was predicted to 

occur adjacent to the column at 408 kN. This is consistent with the test where the 

reinforcement only yielded locally around the column in the test and no distinct 

yielding zone was observed.  

Fig. 15 shows that significant plastic strains were predicted to develop in the 

tensile flange and web of the shearhead at failure but not in the compression flange 

indicating composite action with the slab. Fig 16 shows the measured and computed 

axial strains εxx in the top and bottom flanges of two mutual perpendicular shear arms. 

The positions of the strain gauges are shown in Fig. 9b. The measured and computed 

strains agree reasonably well in the compressive regime (positive) until near failure 

but the tensile strains diverge at a load of approximately 250kN. The divergence is 

thought to be due to bond slip between the tensile flange and the surrounding concrete 

which the continuous mesh formulation could not capture. Fig. 16 also shows that 

both the tensile and compressive flanges yielded at failure in the test.  

Fig. 17 shows the axial strain distribution εxx in the concrete through the depth 

of the slab at 4 points (see Fig. 9a) adjacent to the intersection between the shear arm 

and the outer face of the gusset plate at the ultimate load. The vertical lines show the 

positions of the flexural reinforcement and the centrelines of the flanges of the 

shearhead. The presence of shear strains caused the axial strain distribution to deviate 

from the Kirchhoff hypothesis. The tensile flange of the shearhead appears to have 

locally controlled crack widths in the concrete since the strain at the level of the 

tension reinforcement increases from εxx= 0.0014 within the width of the tensile 

flange to εxx= 0.0053 outside the section. The kink in the tensile strain distribution at 

the level of the reinforcement is attributed to the failure of the smeared crack 
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approach to model the slip between the tensile flange of the shearhead and the 

surrounding concrete. Fig. 17 also shows that a compression zone of fairly uniform 

depth formed in the concrete below the compression flange of the shearhead and that 

the compressive strain reduced to near zero in the concrete below the compression 

reinforcement. 

Fig. 18 shows contour levels at the ultimate load for horizontally aligned 

Mode-1 tensile cracks in the concrete layer surrounding the bottom reinforcement. 

The cracking is consistent with that observed in the test at failure where the column 

and upper part of the slab became detached from the compressive surface below 

which was left intact. The analysis suggests that the cracking initiated at the gusset 

plates which formed a horizontal discontinuity in the slab. The horizontal cracking in 

the reinforcement layer appears to explain the drop in the compressive strain below 

the flange indicated in Fig. 17. The influence of the gusset plates on the distribution of 

εxx through the slab depth at the column face was investigated by re-analysing Slab S1 

with a structural steel shearhead that measured 1080 mm from tip to tip. The cross-

section of the shearhead was an “I” section with an overall depth of 97mm and 

180mm wide. The flange was 8mm thick and the web was 12 mm thick. The 

shearhead increased the computed failure load of S1 from 642kN to 800kN. Figs. 19a 

and 19b respectively show the resulting strain distributions at 3 points adjacent to the 

column face (see Fig. 1) for the baseline model without and with the shearhead. 

Comparison of the two figures shows that the maximum compressive strain occurred 

at the extreme compressive fibre and that the presence of the shearhead evened out the 

strain distribution across the width of the column. Comparison of Figs. 17 and 19b 

supports the hypothesis that the gusset plates caused the compressive strain to reduce 

to near zero in the concrete below the compressive flange of the shearhead.  
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4.4 Factors influencing the load distribution on the shearhead 

This section examines the shape of the loading distribution along the arms of the 

shearhead and the influence of the length and relative stiffness of the shearhead arms. 

The shear force was calculated at intervals along the arms of the shearhead by 

numerically integrating the computed shear stresses. Fig. 20 shows that the arms 

collected vertical loads gradually since the shear force is not uniformly distributed 

along the arms as would be the case if the load was applied at the ends of the arms. 

The bending moment was calculated at intervals along the shearhead arms by a) 

numerically integrating the axial stresses computed in the finite element analysis and 

b) by integrating the shear force distributions shown in Fig. 20. Fig. 21 shows that the 

arms of the shearhead acted compositely with the slab since the bending moments 

calculated with procedure a) above are less than those calculated with procedure b). 

This conclusion is consistent with the observation that a significant tensile force of 

126 kN was computed to develop at failure in each arm at the intersection with the 

face of the gusset plate. Fig. 21 also shows that the bending moments computed with 

procedure a) can be conservatively estimated with a triangularly distributed load that 

decreases from a maximum at the tip of the shear arms to zero at the intersection with 

the gusset plates. The bending moments from procedure b) above are considered 

appropriate for design since the degree of composite action is uncertain in reality. The 

total shear force resisted by the four arms of the shearhead was ~124 kN (or 27% of 

the failure load) at the outer edge of the gusset plates. This implies that the greater 

part of the load was transferred into the column through the concrete at the perimeter 

of the gusset plate.  
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4.5 Modelling of slabs tested by others 

The NLFEA procedure was further validated by modelling 3 slabs with concrete 

columns and structural steel shearheads tested by Corley and Hawkins [22]. 

Specimens BN1, BH2 and BH3 were analysed. Full details of the specimens are given 

elsewhere [22]. Specimen BN1 was a control specimen without a shearhead. 

Specimens BH2 and BH3 were reinforced with shearheads with the configuration 

shown in Fig. 22a. The same “I” section was used for the arms of the shearhead in 

each specimen but the length of the shearhead was doubled in test BH3. All three 

specimens failed in punching shear. Table 2 gives the material properties used in the 

analysis. Table 3 shows that the analyses accurately predicted the measured failure 

loads. Fig. 20b shows the predicted variation in shear force along the shearhead arms 

in tests BH2 and BH3. The analyses suggest that the shear force was introduced 

primarily into the tips of the shearhead in BH2 but more uniformly along the length of 

the arms in specimen BH3 in which the shearhead was twice as long. In both cases, 

shear forces were transferred back into the slab from the shearhead near the column.  

Bending moments were calculated at the column face by integrating the axial stresses 

in the shearhead. Table 3 shows that the resulting bending moments compared well 

with those derived by Corley and Hawkins [22] at the ultimate load from the 

measured strains. 

 

5. REVIEW OF DESIGN RECOMMENDATIONS FOR SHEARHEADS 

The tests of Corley et al. [22] and Chana and Birjandi [23] show that shearheads 

increase punching capacity by enlarging the critical shear perimeter in much the same 

way as a larger column. Corley et al. [22] defined shearheads as over-reinforcing if 

the flexural capacity of the shearhead was not reached before the end of the test and 
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under-reinforcing if the flexural capacity was reached before the end of the test. The 

test data [22], [23]
 
suggests that the failure surface follows the perimeter of the 

shearhead for over-reinforcing shearheads but falls inside the ends of the shearhead 

for under-reinforcing shearheads. The punching shear strength of a slab reinforced 

with a shearhead can be expressed as: 

Vu = VRdc+Vsh  = Vout                                                                                           (21) 

where  is an efficiency factor, VRdc is the shear resistance provided by the concrete 

without the shearhead, Vsh is the contribution of the shearhead and Vout is the shear 

resistance of the enlarged failure surface. The basic shear resistance without the 

shearhead VRdc is calculated as follows in EC2 [24]: 

VRdc = vRdcU1d                                                                                                           (22)    

where vRdc is the shear resistance provided by the concrete, d is the effective depth and 

U1 is the basic shear perimeter which is calculated as follows:  

U1 = Ucol+4d                                                                                                            (23)    

where Ucol is the perimeter of the column. 

Vout = vRdcUoutd                                                                                                          (24) 

where Uout is the perimeter of the enlarged failure surface. 

 

5.1 ACI 318 [21] design method 

ACI 318 [21]
 
gives a design method for shearheads which is based on the work of 

Corley et al. [18] in which the punching shear resistance is calculated as follows: 

dU
f

V out

ck

u
3

                                                                                                        (25) 

where Uout is the critical shear perimeter defined in Fig. 22a. The plastic moment of 

resistance of the shear head arms is calculated with Equation 11-37 in ACI 318
 
[21]

 



 25 

which is derived from the idealised shear force distribution shown in Fig. 22b with 

VRdc = 0.5Vu .The coefficient v in Fig. 22a is the ratio between the flexural rigidity of 

each shearhead arm and that of the surrounding composite cracked slab (including the 

shearhead) of width hcol+d where hcol is the column width perpendicular to the 

shearhead. The enlarged shear perimeter Uout is assumed to be critical provided the 

plastic moment of resistance of the shearhead arms satisfies equation 11-37 in ACI 

318 and v≥0.15. 

 

5.2 Chana and Birjandi [23] design method 

Chana and Birjandi [23] developed an alternative design method for structural steel 

shearheads on the basis of 19 tests they carried out on large as well as small scale 

specimens. The method is applicable to both ACI 318 type shearheads (see Fig. 22c) 

and shearheads enclosed with secondary arms (see Fig. 22d). For shearheads without 

openings adjacent to the column, the method is equivalent to assuming =1 and Vsh = 

nMp/L in Equation (21) where Mp is the plastic moment of resistance of each 

shearhead arm, n is the number of arms and L is the extension of the arms from the 

column face. The critical outer shear perimeter Uout is calculated as shown in Figs. 

22c and 22d respectively for ACI 318 type and enclosed shearheads. Chana and 

Birjandi [21] assumed that shearheads designed for Mp=LVsh /n are sufficiently stiff to 

push the critical punching shear perimeter outside the shearhead.  

 

5.3 Assessment of design methods with data from Corley and Hawkins [22] 

Fig. 23 compares the predictions of ACI 318 and the Chana and Birjandi [23] method 

with data from 21 slabs tested by Corley and Hawkins [22]. The basic shear strength 

VRdc was calculated with EC2 (with c=1.0) in the Chana and Birjandi [23] method 
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rather than BS8110 [25] as originally used and the effective length of the shearhead 

arms was taken as the smaller of the actual length or L* = 0.5hcol + 4Mp/(Vout-VRdc) in 

the calculation of Uout.  The shear force Vsh was assumed to be introduced into the 

shearhead at the effective ends of its arms (i.e. at a distance L*-0.5hcol from the 

column face).  Fig. 23 shows that the Chana and Birjandi [23] method predicts the 

shear strength more accurately than ACI 318 [21]. Fig. 24 shows that the increase in 

shear strength provided by the shearhead was significantly greater than vVctest for 

most of the specimens tested by Corley and Hawkins [22].  

 

5.3.1 Assessment of tested Specimen H1 with ACI 318 

The tested specimen H1 does not strictly comply with the requirements of ACI 318 

since the ratio v between the flexural stiffness of each shearhead arm and the 

surrounding composite cracked slab is ~0.11 which is less than the critical value of 

0.15 given in ACI 318. Despite this, the punching shear resistance was calculated with 

ACI 318 using the full effective depth of d = 123mm and v=0.11. The calculated 

failure load was 650kN which is significantly greater than the measured failure load 

of 453kN. 

 

5.3.2 Assessment of tested Specimen H1 with method of Chana and Birjandi [23] 

VRdc is uncertain for specimen H1 due to the presence of the gusset plate which 

is analogous to an enclosed shearhead. Therefore, VRdc was calculated for specimen 

H1 with a) EC2 for a 180mm square column, b) following Chana and Birjandi’s [23] 

recommendations for an enclosed shearhead with dimensions equal to the gusset plate 

(see Fig. 22c) with vRdc from EC2, and c) following the ACI 318 recommendations for 

a small shearhead with dimensions equal to the gusset plate (for which the punching 
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capacity of Specimen H1 reduces to that of a 180mm square column). The full 

effective depth of 123mm was used throughout. The use of ACI 318 to estimate the 

shear strength without the shearhead is somewhat speculative since ACI 318 does not 

include provisions for dealing with gusset plates. Precedence for this approach is 

provided by Corley and Hawkins’ [22] analysis of lift slab collars which are 

analogous to the gusset plates. The basic shear strength vRdc was calculated with EC2 

to be 1.2MPa (with c=1.0). The resulting shear strengths VRdc of a) 337 kN, b) 320 

kN and c) 319 kN are similar to VNLFEA-Vshearhead NLFEA =  432-124=308 kN. VRdc was 

also estimated with NLFEA assuming the shearhead arms stopped at the edge of the 

gusset plate and was found to be 255kN which suggests that the shearhead increased 

the computed shear capacity of the surrounding concrete in addition to transferring 

load directly into the column.  

The shear resistance of Specimen H1 was calculated with the Chana and 

Birjandi [23]  method to be 498 kN with VRdc equal to 320 kN from b) above and 472 

kN with VRdc = 255kN from the NLFEA. The effective length of the shearhead arms 

was taken as Leff* = 0.5hcol+4Mp/(Vout-VRdc) where Vout = vRdcUoutd. Uout was 

calculated in accordance with Fig. 22c. These estimates compare reasonably well with 

the measured failure load of 453 kN and are relatively insensitive to VRdc even though 

the  ratio between the depths of the shearhead and slab is relatively low compared 

with those in previous tests [22], [23].  

 

 

5.3.3 Comparison of calculated internal actions in shearhead arms 

Figs 20 and 21 compare the shear force and bending moment distributions in the 

shearhead arms given by NLFEA, ACI 318 and Chana and Birjandi [23] at the failure 
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load of 432 kN computed in the NLFEA. The ACI 318 bending moments were 

calculated with both Equation 11-37 in ACI 318 and the shear force distribution 

shown in Fig. 22b with VRdc= 255 kN from the NLFEA without the shearhead arms. 

The effective length of the shearhead arms was taken as L* = 0.5hcol+ 4Mp/(Vpred-

VRdc) in the Chana and Birjandi [23] method with Vpred=432 kN and VRdc = 255 kN. 

Figs. 20, 21, and 23 suggest that the design method of Chana and Birjandi [23] is 

more realistic than ACI 318 particularly for relatively light shearheads such as that 

described in this paper where v is less than the limiting value of 0.15 in ACI 318.   

 

6. CONCLUSION 

This paper presents a non-linear finite element procedure for simulating 

punching shear failure in reinforced concrete slabs with and without shearheads. The 

procedure is shown to accurately predict the measured response of a recent large scale 

punching test on a slab without shear reinforcement. Sensitivity analyses are 

presented to show the influence of the concrete tensile strength, shear retention factor 

and mesh density on the predicted failure load. Tension softening was found to have 

an even greater affect on the predicted load displacement response than the concrete 

tensile strength. Good results were obtained when the concrete tensile strength was 

taken between 0.45-0.6 times the indirect tensile strength. It is shown that the area 

under the tension softening diagram should be related to the tensile fracture energy Gf 

and the crack band width but the shape of the softening diagram (i.e. linear, 

exponential, Hordijk [19]) was not found to have a significant influence on the 

predicted performance.  

Subsequently, the proposed finite element procedure is used to analyse the 

influence of structural steel shearheads on punching failure. Detailed results are 
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presented for the analysis of a large scale specimen incorporating a structural steel 

shearhead tested as part of this investigation. Results are also presented for 3 slabs 

tested by Corley and Hawkins [22] of which two were reinforced with shearheads. 

The finite element procedure is shown to give good predictions of the measured shear 

strengths of all these specimens. The results of the finite element analysis were used 

to investigate the contribution of the shearhead to the punching shear resistance. The 

analyses suggest that loads are principally transferred into shearhead at the tips of the 

arms if the failure surface lies outside the shearhead as shown in Fig. 22c. Load is 

transferred more uniformly into the arms of the shearhead if the punching failure 

surface lies within the ends of the shear arms as in the authors’ test H1 and test BH3 

of Corley and Hawkins [22].  

The design methods of ACI 318 [21] and Chana and Birjandi [23] for 

shearheads are evaluated in the light of the conclusions from the finite element 

analysis and test data from this programme and Corley and Hawkins . Chana and 

Birjandi’s [21] design method was found to give the best predictions of shear strength.  
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Table 1: Material properties used in baseline analysis for slab S1 
  

Model 
fc’ 

[MPa] 

ft 

[MPa] 

fy 

[MPa] 

εcu 

 

Ec 

[MPa] 

Gf 

[Nmm/mm2] 

Gc 

[Nmm/mm2] 
β 
 

softening 

Param1 

(Base) 
24 1.5 550 0.003 13500 0.058 11.60 0.25 exponential 

 

Note: fc’=concrete cylinder strength, ft=concrete tensile strength, Ec = concrete elastic 

modulus, Gf = tensile fracture energy, Gc = compressive fracture energy and =shear 

retention factor. 

 

 

Table 2: Material properties used in analysis of slab H1 

 

Model 
fc’ 

[MPa] 

ft 

[MPa] 

fy 

[MPa] 

εcu 

 

Ec 

[MPa] 

Gf 

[Nmm/mm2] 

Gc 

[Nmm/mm2] 
β 
 

softening 

H1 

Base 
38 1.5 600 0.003 21075 0.067 6.7 0.1 exponential 

H1† 

Sensiti-
vity 

38 1.89 600 0.003 21075 0.067 13.4 0.25 exponential 

BN1 14.5 1.18 423 0.0025 9634 0.034 3.4 0.2 exponential 

BH2 14.5 1.18 423 0.0025 9634 0.034 3.4 0.2 exponential 

BH3 14.5 1.18 423 0.0025 9634 0.034 3.4 0.2 exponential 

 

Note: † The material properties used in the sensitivity analysis have the same 

relationship with the concrete cylinder strength as those shown in Table 1. 
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Table 3: Measured and predicted response of specimens tested by Corley and 

Hawkins [22]. 

 

 Lv V-test 
V-

predicted 
V-pred/V-

test 
M† test 

 

M† predicted 

NLFEA 

Shearhead 

yield in test 

 [mm] [kN] [kN] [1] [kNm] [kNm] - 

BN-1* - 265.56 258.00 0.97 - - - 

BH-2 229 301.14 312.80 1.04 3.36 5.13 No 

BH-3 457 402.14 405.00 1.01 9.48 9.71 Yes 

  

Note: † Moment in shearhead at face of column. 
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Figure 1: Geometry of finite element model used in baseline analysis for Slab S1 
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Figure 2: 3-D finite element mesh used in baseline model for Slab S1 
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Figure 3: Comparison between measured and predicted (baseline) load-displacement 

response for Slab S1.  

 

 

 
 

Figure 4: Idealised load displacement response for punching shear test 
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Figure 5: Influence of concrete tensile strength on predicted response of Slab S1 
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Figure 6: Influence of tension softening model on predicted response of Slab S1 
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Figure 7: Influence of shear retention factor  on predicted response of Slab S1 
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Figure 8:  Influence of mesh size on predicted response of Slab S1 
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Figure 9a: Plan view of Specimen H1 
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Figure 9b:  Detail of shearhead  
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Figure 9c:  Stress-strain diagram for shearhead 
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Figure 9d:  Stress-strain diagram for H12 reinforcement bar 
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Figure 10: Reinforcement details for Slab H1 (cover 20mm to top and bottom 

reinforcement) 
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Figure 11: Crack pattern at failure for Slab H1 

 

 

 
 

 

Figure 12: Deformed shape of shear head after test  
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Figure 13a:  Finite element mesh used to model Slab H1   

 

 

 
 

Figure 13b: Finite element mesh used to model shear head  
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Figure 14: Comparison of measured and predicted load displacement response for 

Slab H1  

 

 

 
Figure 15: Computed plastic εxx strain distribution in the shear arm at Pu=432kN 
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Figure 16: Comparison of measured and predicted strains in the top and bottom 

flanges of the shear head at the intersection with the gusset plate  
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Figure 17:  Variation in predicted strains xx at Pu=432kN over the depth of the slab 

at the intersection with the gusset plate.  

 

 
 

Figure 18: Mode-1 (almost horizontal) crack contour levels in reinforcement layer at 

at Pu=432kN 
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Figure 19a: Distribution of εxx over the depth of Slab S1 at the face of column for 

baseline model at ultimate load. 
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Figure 19b: Distribution of εxx over the depth of Slab S1 at the face of column for 

baseline model with shear head at ultimate load.  
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Figure 20a:  Shear force distribution along shear arm in Slab H1 at Pu = 432 kN 
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Figure 20b: Calculated shearforce distribution along shear arm in Slabs BH2 and 

BH3 of Corley and Hawkins [22] at predicted failure load. 
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Figure 21: Bending moment distribution along shear arm in Slab H1 at Pu = 432 kN 

 

 
 

 

 

Fig. 22a: ACI 318 [21] critical shear perimeter for large shear head and shear force 

distribution 
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Note: h = depth of shearhead arms 

 

 

Figure 22b: ACI 318 [21] shear force distribution along shearhead arms 

 

 
 

Figure 22c: Chana and Birjandi [23] critical shear perimeter for enclosed shearhead 
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Figure 22d: Chana and Birjandi [23] critical shear perimeter for ACI 318 [21] 
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Figure 23: Comparison between measured and predicted shear strengths for tests of 

Corley and Hawkins [22]. 
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Figure 24: Comparison between measured and predicted contribution of shear head 

for tests of Corley and Hawkins [22]. 

 

 

 


