4,389 research outputs found
Gauge-Invariant Initial Conditions and Early Time Perturbations in Quintessence Universes
We present a systematic treatment of the initial conditions and evolution of
cosmological perturbations in a universe containing photons, baryons,
neutrinos, cold dark matter, and a scalar quintessence field. By formulating
the evolution in terms of a differential equation involving a matrix acting on
a vector comprised of the perturbation variables, we can use the familiar
language of eigenvalues and eigenvectors. As the largest eigenvalue of the
evolution matrix is fourfold degenerate, it follows that there are four
dominant modes with non-diverging gravitational potential at early times,
corresponding to adiabatic, cold dark matter isocurvature, baryon isocurvature
and neutrino isocurvature perturbations. We conclude that quintessence does not
lead to an additional independent mode.Comment: Replaced with published version, 12 pages, 2 figure
Controlling Visible Light-Driven Photoconductivity in Self-Assembled Perylene Bisimide Structures
Alanine-functionalized perylene bisimides (PBI-A) are promising photoconductive materials. PBI-A self-assembles at high concentrations (mM) into highly ordered wormlike structures that are suitable for charge transport. However, we previously reported that the photoconductive properties of dried films of PBI-A did not correlate with the electronic absorption spectra as activity was only observed under UV light. Using transient absorption spectroscopy, we now demonstrate that charge separation can occur within these PBI-A structures in water under visible light. The lack of charge separation in the films is shown by DFT calculations to be due to a large ion-pair energy in the dried samples which is due to both the low dielectric environment and the change in the site of hole-localization upon drying. However, visible light photoconductivity can be induced in dried PBI-A films through the addition of methanol vapor, a suitable electron donor. The extension of PBI-A film activity into the visible region demonstrates that this class of self-assembled PBI-A structures may be of use in a heterojunction system when coupled to a suitable electron donor
The Lyman-alpha forest at redshifts 0.1 -- 1.6: good agreement between a large hydrodynamic simulation and HST spectra
We give a comprehensive statistical description of the Lyman-alpha absorption
from the intergalactic medium in a hydrodynamic simulation at redshifts
0.1-1.6, the range of redshifts covered by HST spectra of QSOs. We use the ENZO
code to make a 76 comoving Mpc cube simulation using 75 kpc cells, for a Hubble
constant of 71 km/s/Mpc. The best prior work, by \citet{dave99},used an SPH
simulation in a 15.6 Mpc box with an effective resolution of 245 kpc and
slightly different cosmological parameters. At redshifts z=2 this simulation is
different from data. \citet{tytler07b} found that the simulated spectra at z=2
have too little power on large scales, Lyman-alpha lines are too wide, there is
a lack high column density lines, and there is a lack of pixels with low flux.
Here we present statistics at z<1.6, including the flux distribution, the mean
flux, the effective opacity, and the power and correlation of the flux. We also
give statistics of the lyman alpha lines including the line width distribution,
the column density distribution, the number of lines per unit equivalent width
and redshift, and the correlation between the line width and column density. We
find that the mean amount of absorption in the simulated spectra changes
smoothly with redshift with DA(z)=0.01(1+z)^{2.25}. Both the trend and absolute
values are close to measurements of HST spectra by \citet{kirkman07a}. The
column density and line width distributions are also close to those measured
from HST spectra by \citet{janknecht06a}, except for the mode of the line width
distribution which is smaller in the HST spectra. Although some differences
that we saw at z=2 are too subtle to be seen in existing HST spectra, overall,
the simulation gives an good description of HST spectra at 0.1<z<1.6
Metamorphic testing for cybersecurity
Metamorphic testing (MT) can enhance security testing by providing an alternative to using a testing oracle, which is often unavailable or impractical. The authors report how MT detected previously unknown bugs in real-world critical applications such as code obfuscators, giving evidence that software testing requires diverse perspectives to achieve greater cybersecurity
Cosmological Imprint of an Energy Component with General Equation of State
We examine the possibility that a significant component of the energy density
of the universe has an equation-of-state different from that of matter,
radiation or cosmological constant (). An example is a cosmic scalar
field evolving in a potential, but our treatment is more general. Including
this component alters cosmic evolution in a way that fits current observations
well. Unlike , it evolves dynamically and develops fluctuations,
leaving a distinctive imprint on the microwave background anisotropy and mass
power spectrum.Comment: revised version, with added references, to appear in Phys. Rev. Lett.
(4 pages Latex, 2 postscript figures
Sequencing of 15 622 Gene-bearing BACs Clarifies the Gene-dense Regions of the Barley Genome
Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley–Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant
Garden and landscape-scale correlates of moths of differing conservation status: significant effects of urbanization and habitat diversity
Moths are abundant and ubiquitous in vegetated terrestrial environments and are pollinators, important herbivores of wild plants, and food for birds, bats and rodents. In recent years, many once abundant and widespread species have shown sharp declines that have been cited by some as indicative of a widespread insect biodiversity crisis. Likely causes of these declines include agricultural intensification, light pollution, climate change, and urbanization; however, the real underlying cause(s) is still open to conjecture. We used data collected from the citizen science Garden Moth Scheme (GMS) to explore the spatial association between the abundance of 195 widespread British species of moth, and garden habitat and landscape features, to see if spatial habitat and landscape associations varied for species of differing conservation status. We found that associations with habitat and landscape composition were species-specific, but that there were consistent trends in species richness and total moth abundance. Gardens with more diverse and extensive microhabitats were associated with higher species richness and moth abundance; gardens near to the coast were associated with higher richness and moth abundance; and gardens in more urbanized locations were associated with lower species richness and moth abundance. The same trends were also found for species classified as increasing, declining and vulnerable under IUCN (World Conservation Union) criteria
Deciphering the genome structure and paleohistory of _Theobroma cacao_
We sequenced and assembled the genome of _Theobroma cacao_, an economically important tropical fruit tree crop that is the source of chocolate. The assembly corresponds to 76% of the estimated genome size and contains almost all previously described genes, with 82% of them anchored on the 10 _T. cacao_ chromosomes. Analysis of this sequence information highlighted specific expansion of some gene families during evolution, for example flavonoid-related genes. It also provides a major source of candidate genes for _T. cacao_ disease resistance and quality improvement. Based on the inferred paleohistory of the T. cacao genome, we propose an evolutionary scenario whereby the ten _T. cacao_ chromosomes were shaped from an ancestor through eleven chromosome fusions. The _T. cacao_ genome can be considered as a simple living relic of higher plant evolution
Recommended from our members
Design and performance of the first IceAct demonstrator at the South Pole
In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector
- …
