
Chen, Tsong Yueh and Kuo, Fei-Ching and Ma,
Wenjuan and Susilo, Willy and Towey, Dave and Voas,
Jeffrey and Zhou, Zhi Quan (2016) Metamorphic testing
for cybersecurity. Computer, 49 (6). pp. 48-55. ISSN
0018-9162

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/51788/1/MT.for.Cybersecurity.Accepted.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Nottingham ePrints

https://core.ac.uk/display/157770331?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:eprints@nottingham.ac.uk

1
	

metamorphic testing, cybersecurity, validation, software testing, cyberthreats,
cyberattack, oracle problem, software security

Cover Feature
Metamorphic Testing for Cybersecurity

Tsong	Yueh	Chen	and	Fei-Ching	Kuo,	Swinburne	University	of	Technology		

Wenjuan	Ma	and	Willy	Susilo,	University	of	Wollongong	

Dave	Towey,	University	of	Nottingham	Ningbo	China	

Jeffrey	Voas,	US	National	Institute	of	Standards	and	Technology	

Zhi	Quan	Zhou,	University	of	Wollongong	

Metamorphic testing (MT) can enhance security testing by providing an
alternative to using a testing oracle, which is often unavailable or impractical.
The authors report how MT detected previously unknown bugs in real-world
critical applications such as code obfuscators, giving evidence that software
testing requires diverse perspectives to achieve greater cybersecurity.

	

Deploying	inadequately	tested	software	can	have	serious	consequences	for	Internet	and	systems	security,	
potentially	 resulting	 in	 “cyberspace	 catastrophes”.[1]	 To	 avoid	 these	effects,	 testers	must	 adopt	 smarter	
testing	techniques[1]	 for	analyzing	security-related	functions.	However,	software	testing	 is	 fundamentally	
challenged	by	the	oracle	problem,[2]	when	a	test	oracle—the	mechanism	that	testers	use	to	determine	the	
correctness	of	test-case	execution	results—is	not	available	or	cannot	be	practically	applied.	Most	software-
testing	techniques	assume	that	an	oracle	is	available,	but	that	assumption	is	not	always	valid	when	testing	
complex	 applications,	 such	 as	 compilers,	 search	 engines,	 and	 software	 with	 diverse	 cryptographic	
algorithms.	In	these	cases,	an	oracle	is	often	unavailable	or	is	theoretically	available	but	too	expensive	to	be	
practical.	

The	oracle	problem	also	exacerbates	negative	testing—testing	a	program’s	behavior	with	invalid	inputs—
because	 testing	with	 this	 type	 of	 input	 often	means	 that	 the	 outputs	 are	 unpredictable	 or	 expensive	 to	
verify.	Worse	still,	resource	constraints	might	mean	that	testers	skip	negative	testing,	potentially	allowing	
security	holes	to	persist	into	the	released	software.[1],[4]	

Metamorphic	 testing	 (MT)	 addresses	 this	 problem	 by	 providing	 a	 new	 testing	 perspective.	 Instead	 of	
focusing	on	each	output’s	correctness	for	a	program	under	test	(PUT),	MT	looks	at	metamorphic	relations	
(MRs)—how	the	inputs	and	outputs	of	multiple	PUT	executions	relate.	MRs	include	but	are	not	limited	to	
identity	relationships.[9]	Even	if	a	test	case	does	not	reveal	a	failure,	testers	can	use	it	to	generate	follow-
up	 test	 cases	by	 referring	 to	 selected	MRs,	and	 further	 test	 the	PUT	automatically.	Because	MT	 looks	at	
MRs	 instead	 of	 individual	 outputs,	 software	 testing	 and	 analysis	 does	 not	 require	 an	 oracle,	 hence	
alleviating	the	oracle	problem.[5]–[10]		

Although	MT’s	fault-detection	performance	might	be	slightly	lower	than	an	oracle’s	(which	is	why	we	say	
“alleviates”	the	problem),	MT	has	been	applied	to	test	various	applications,	from	numerical	programs	(such	
as	those	that	perform	scientific	computation)	to	nonnumerical	programs	(such	as	search	engines),[10]	and	
has	proved	highly	effective	in	detecting	failures.[8],[11],[12]		

To	evaluate	the	effectiveness	of	MT	in	detecting	bugs	 in	real-world	critical	applications	with	no	oracle,	
we	 used	 MT	 to	 test	 code	 obfuscators—software	 that	 transforms	 a	 program’s	 original	 code	 into	 an	
equivalent	but	less	readable	form	to	prevent	attackers	from	analyzing	and	understanding	the	original	code.	

2
	

Rather	 than	 focusing	 on	 each	 obfuscated	 program’s	 correctness,	we	 inspected	 the	MRs	 among	multiple	
obfuscated	programs.		

We	also	evaluated	MT’s	effectiveness	in	detecting	Web	failures	by	using	it	to	test	the	login	page	of	the	
National	Australia	Bank	(NAB)	for	compatibility	problems	between	the	website	and	the	client	side.	 In	this	
evaluation,	we	used	a	simple	MR	and	still	found	problems.	

In	both	the	code	obfuscator	and	Web	tests,	MT	detected	previously	unknown	faults.	To	the	best	of	our	
knowledge,	this	article	is	the	first	report	on	the	testing	of	code	obfuscators’	functional	correctness	and	the	
detection	of	actual	bugs	in	them.	

Effects of the Oracle Problem

The	testing	of	certificate-validation	 logic	 in	SSL/TLS	 implementations	 illustrates	the	dilemma	caused	by	
the	 oracle	 problem.[3]	 If	 the	 PUT	 accepts	 a	 nontrivial	 test	 certificate,	 how	 can	 testers	 be	 sure	 that	 it	 is	
indeed	valid?	 If	 the	PUT	 rejects	 the	 certificate,	how	can	 they	 know	whether	or	not	 the	 reason	given	 for	
rejection	is	actually	correct?	As	some	researchers	point	out,	determining	test-certificate	validity	manually	is	
not	 practical	 in	 large-scale	 testing,	 and	 automating	 the	 procedure	 “essentially	 requires	 reimplementing	
certificate	validation,	which	is	impractical	and	has	high	potential	for	bugs	of	its	own.”[3]		

In	 their	work	 on	 testing	 certificate-validation	 logic,[3]	 the	 researchers	 obtained	 several	 independently	
implemented	programs	for	X.509	certificate	validation,	and	could	thus	compare	the	programs’	outputs	for	
the	same	 input	certificates	and	note	any	discrepancies.	However,	even	 if	discrepancies	were	detected,	 it	
might	not	be	easy	 to	know	which	program	 is	 correct—actually,	 all	programs	could	be	 incorrect.	 In	 some	
situations,	multiple	implementations	of	the	same	specification	cannot	be	obtained,	and	the	oracle	problem	
becomes	more	 serious.	 In	 code	 obfuscator	 testing,	 for	 example,	 the	 tester	must	 determine	 if	 the	 input	
(original)	code	and	the	output	(obfuscated)	code	are	equivalent,	which	can	be	extremely	difficult.	

The	 oracle	 problem	 also	 discourages	 testers	 from	 attempting	 fuzz	 testing,	 or	 fuzzing—an	 important	
negative-testing	 technique.	 Fuzzing	 subjects	 the	PUT	 to	 invalid,	 random,	or	 semirandom	 inputs.	 Because	
fuzzing	is	conceptually	simple	and	easy	to	implement	(through	fuzzers),	and	can	cause	the	PUT	to	crash	in	
unexpected	ways,	fuzzing	has	a	potentially	high	benefit-to-cost	ratio	and	is	thus	recognized	as	an	efficient	
automatic	testing	technique	for	detecting	software	and	network	vulnerabilities.[1],[4].	

The	oracle	problem	 is	a	major	challenge	 for	 fuzzing	because	verifying	 the	output	 for	 large	amounts	of	
random	 or	 semirandom	 input	 data	 is	 extremely	 difficult,	 if	 not	 impossible.	 Rather	 than	 attempt	 this	
verification,	 fuzzing	 looks	 only	 for	 crashes	 or	 some	other	 undesirable	 PUT	behavior,	 and	millions	 of	 test	
cases	might	be	executed	before	a	crash.[4]	Moreover,	many	bugs	such	as	logic	errors[5]	do	not	crash	the	
PUT,	 but	 instead	 produce	 incorrect	 output—a	 failure	 type	 that	 is	 much	 more	 difficult	 to	 detect.	 The	
notorious	 Heartbleed	 bug,[1]	 for	 example,	 does	 not	 cause	 a	 crash	 and	 is	 therefore	 undetectable	 with	
simple	fuzzing.[4]	

How Metamorphic Testing (MT) Works

To	illustrate	how	MT	works,	consider	a	PUT	that	implements	the	sine	function.	An	MR	for	that	PUT	might	
be	sin(x)	=	sin	(180	−	x)	and	a	test	case	might	be	t	=	32.875.	An	output	of,	say,	0.543	might	be	hard	to	verify	
without	an	oracle.	Regardless	of	whether	or	not	an	oracle	is	available,	MT	suggests	a	possible	follow-up	test	
case,	tʹ	=	180	−	32.875.	After	taking	rounding	errors	 into	consideration,	 if	 the	two	outputs	are	not	equal,	
then	MT	has	revealed	a	failure.		

The	 detection	 of	 compiler	 bugs	 is	 an	 example	 of	 MT	 application.	 Compiler	 correctness	 is	 extremely	
important	because	some	of	the	programs	being	compiled	might	perform	critical	functions.	Researchers	at	
UC	Davis	won	 a	 distinguished	 paper	 award[13]	 for	 their	 compiler	 testing	 study,	which	was	 “based	 on	 a	
particularly	clever	application	of	metamorphic	testing.”[14]	Their	MR	is	a	special	instance	of	the	following:	
If	source	programs	P	and	Pʹ	are	equivalent	for	input	I,	then	their	compiler-generated	object	programs	O	and	
Oʹ	should	also	be	equivalent	with	respect	to	 I.	Researchers	constructed	Pʹ	 in	three	steps:	execute	O	using	

3
	

arbitrary	 input	 I,	 record	code-coverage	 information	with	respect	 to	P,	and	create	Pʹ	by	randomly	pruning	
some	 unexecuted	 statements	 from	P.	 A	 compiler	 bug	 is	 reported	 if	 the	 output	 of	Oʹ	 on	 I	 has	 changed.	
Researchers	documented	147	confirmed,	unique	bug	reports	for	GCC	and	LLVM	alone.[13]		

Detecting Obfuscator Bugs

Obfuscators	are	important	in	protecting	confidential	software	elements,	but	bugs	can	be	difficult	to	find,	
even	with	advanced	compiler-testing	techniques.[15]	Our	case	study	aimed	to	test	well-known,	real-world	
obfuscators	using	MT	with	diverse	MRs	and	a	small	set	of	test	cases.		

Obfuscators tested
We	tested	four	obfuscators:	

• Cobfusc	 (http://manpages.ubuntu.com/manpages/hardy/man1/cobfusc.1.html)	 is	 an	 open	
source	Linux	utility	that	makes	a	C	source	file	unreadable,	but	compilable.	

• Stunnix	CXX-Obfus	is	a	commercially	available	C/C++	obfuscator,	which	was	previously	tested	
by	other	researchers	with	no	detected	failures.[15]	CXX-Obfus	users	include	the	US	Army	and	
Fortune	500	companies.	

• Tigress	(http://tigress.cs.arizona.edu)	is	a	freely	available	(but	not	open	source)	C	obfuscator	
developed	at	the	University	of	Arizona	that	supports	novel	defenses	against	both	static	and	
dynamic	reverse	engineering.	

• Obfuscator-LLVM	 (https://github.com/obfuscator-llvm/obfuscator/wiki)	 is	 an	 open	 source	
tool	 in	 the	 LLVM	 compilation	 suite.	 Given	 a	 C	 source	 program,	 Obfuscator-LLVM	 outputs	
obfuscated	and	compiled	binary	code.	Obfuscator-LLVM	users	include	Adobe	Systems,	Apple,	
Intel,	and	Sony.		

Metamorphic relations (MRs)
MT	tests	programs	by	referring	to	predefined	MRs.	Because	programmers	can	make	a	variety	of	mistakes,	
we	believe	that	a	collection	of	diverse	MRs	will	detect	more	faults	than	a	single	MR.	For	our	case	study,	we	
defined	four	MRs	(counting	two	versions	of	the	first	MR).		

MR1.	The	first	MR	states	that,	if	two	different	source	programs	(P1	and	P2)	are	functionally	equivalent,	their	
obfuscated	 versions	 (O(P1)	 and	O(P2))	 will	 also	 be	 functionally	 equivalent	 and,	 therefore,	 the	 compiled	
obfuscated	 executable	 programs,	 C(O(P1))	 and	 C(O(P2)),	 should	 have	 equivalent	 behavior—the	 same	
outputs	for	the	same	inputs.	

Testing	based	on	 this	MR	 required	generating	equivalent	 source	programs	P1	 and	P2	either	by	using	a	
separate	tool,	such	as	a	script	written	by	the	tester,	or	by	using	the	obfuscator	itself.	We	denoted	the	first	
strategy	by	MR1.1	and	the	second	by	MR1.2.	For	one	MR1.1,		we	defined		P1	as	If (condition) {do A} else {do B}	and	
P2	as	If (not(condition)) {do B} else {do A}.	For		MR1.2	we	used	the	obfuscator	on	P1		to	generate	the	(supposedly)	
equivalent	program	O(P1).	We	ran	this	obfuscation	twice	to	obtain	P2	=	O(O(P1)).		

	
MR2.	This	MR	states	that	an	obfuscator	should	generate	behaviorally	equivalent	programs	for	the	same	
input	program,	regardless	of	the	obfuscator’s	execution	environment.	In	this	study,	we	defined	that	
environment	as	time:	for	the	same	input	program,	the	obfuscator	should	generate	behaviorally	equivalent	
programs	regardless	of	when	the	obfuscator	is	run.	

MR3.	The	final	MR	differs	from	the	others	in	that	it	looks	at	obfuscated	source	code	without	compiling	it.	In	
contrast,	MR1.1,	MR1.2,	and	MR2	focus	on	the	compiled	obfuscated	programs’	behavioral	equivalence	when	
run	on	the	same	inputs.	MR3	checks	whether	obfuscation	rules	have	been	applied	consistently	each	time	
the	obfuscator	runs.	Even	if	testers	do	not	have	detailed	knowledge	of	the	obfuscation	rules,	they	can	still	

4
	

check	 if	 outputs	 are	 consistent.	 For	 example,	 if	 a	 variable	name	 in	program	P	was	obfuscated	when	 the	
obfuscator	 ran	 yesterday,	 then	 the	 same	 variable	 name	 should	 still	 become	 obfuscated	 when	 the	
obfuscator	is	run	today.	

Sample failures and other detected issues
We	tested	the	obfuscators	using	500	randomly	generated	source	test	cases	(C	programs),	finding	bugs	or	

other	issues	in	every	obfuscator	under	test.	Except	for	Obfuscator-LLVM,	we	tested	all	four	of	the	MRs	we	
defined	on	all	four	obfuscators.	(Obfuscator-LLVM	generates	only	obfuscated	binary	code	without	showing	
the	 obfuscated	 source	 code,	 so	 MR1.2	 and	 MR3	 are	 not	 applicable	 to	 its	 testing.)	 We	 also	 found	 that	
different	MRs	detected	different	kinds	of	issues;	for	brevity,	we	describe	only	one	issue	for	each	MR.		

MR1.1.	 Figure	 1	 shows	 excerpts	 of	 input	 files	 that	 revealed	 a	 failure	 in	 Tigress	 (version:	 Linux	 x86_64-
unstable	 revision	1676)	when	tested	against	 this	MR.	The	 test	case,	P1,	has	 two	 integer	variables	 i	and	 j,	
each	of	which	is	assigned	an	initial	value.	If	i	is	greater	than	j	then	i	is	set	to	i	−	10,	otherwise	i	is	set	to	i	+	
10.	Finally,	the	value	of	i	is	printed.	The	upper	left	box	of	Figure	1	shows	the	essential	part	of	the	P1	code.	
The	corresponding	code	of	an	equivalent	program	P2	 (the	 follow-up	 test	 case)	 is	 shown	 in	 the	 lower	 left	
box.	O(P1)	and	O(P2)	are	the	obfuscated	codes	of	P1	and	P2,	the	essential	parts	of	which	appear	in	the	upper	
and	 lower	right	boxes	of	Figure	1.	 In	a	metamorphic	test,	O(P1)	and	O(P2)	were	compiled	 into	executable	
programs	C(O(P1))	and	C(O(P2)),	which	were	then	run	on	the	same	input,	and	their	outputs	compared.	MT	
detected	that	the	outputs	of	C(O(P1))	and	C(O(P2))	were	different,	thereby	detecting	a	bug	in	Tigress.	

	
	

Figure	 1.	 Tigress	 failure	 detected	 against	 metamorphic	 relation	 (MR)	 MR1.1.	 P1	 and	 P2	 were	 the	
metamorphic	 testing	 (MT)	 test	 cases,	which	were	obfuscated	 into	O(P1)	 and	O(P2).	After	 compiling	O(P1)	
and	 O(P2),	 and	 running	 the	 executable	 programs	 on	 the	 same	 input,	 MT	 detected	 differences	 in	 the	
outputs,	which	signaled	a	bug.	

	
As	Figure	1	shows,	Tigress	incorrectly	obfuscated	the	P1	statement	if (i > j)	into	the	O(P1)	statement	if ((int

)((i > (long)j + 116) − 116)).	In	C,	the	expression	(i > (long)j + 116)	is	evaluated	to	either	true	(1)	or	false	(0),	so	the	
expression	((i > (long)j + 116) − 116)	 is	evaluated	to	either	−115	or	−116,	both	of	which	are	nonzero.	In	C,	any	
nonzero	value	means	true.	Consequently,	the	if statement	of	O(P1)	will	always	take	the	true	branch,	and	the	
false	branch	will	be	unreachable,	which	means	that	O(P1)	is	not	equivalent	to	P1.	Likewise,	the	false	branch	
of	O(P2)	will	 also	be	unreachable.	When	 testing	against	MR1.1,	we	 ran	C(O(P1))	and	C(O(P2))	on	 the	 same	
input—i	=	j	=1,000.	After	the	if	statement,	C(O(P1))	set	i	to	i	–	10,	(that	is,	990),	but	C(O(P2))	set	it	to	i	+	10	
(that	 is,	 1,010),	 thus	 generating	 different	 outputs.	 As	 a	 result,	 testing	 against	 MR1.1	 revealed	 a	 bug	 in	
Tigress.		

Arguably,	we	 could	 have	 detected	 the	 bug	without	MT,	 by	 compiling	P1	 into	C(P1),	 running	C(P1)	 and	
C(O(P1))	on	the	same	input,	and	comparing	their	outputs.	However,	this	conventional	testing	method	can	
detect	a	failure	only	when	the	if	statement	of	P1	takes	the	false	branch;	that	is,	only	when	i’s	initial	value	is	

5
	

less	 than	 or	 equal	 to	 j’s	 initial	 value.	 In	 contrast,	MT	 guarantees	 bug	 detection	 because	 the	 outputs	 of	
C(O(P1))	and	C(O(P2))	will	always	be	different	regardless	of	these	initial	values.	 In	this	example,	therefore,	
MT	 appears	 superior	 to	 conventional	 testing	 methods,	 emphasizing	 the	 need	 to	 test	 from	 diverse	
perspectives.	

MR1.2.	To	test	Cobfusc	(package	cutils	version	1.6),	we	ran	source	test	case	P1,	which	included	the	statement		

int k = 20; //Rz5Wq3OCvuqsA30uaEY0Evc95AIn		

We	 then	 recursively	 called	 Cobfusc	 to	 construct	 P2	 as	 O(O(P1)).	 We	 expected	 O(P1)	 and	 O(P2)	 to	 be	
equivalent,	 but	 surprisingly,	 O(P2)	 could	 not	 pass	 through	 the	 compiler	 because	 the	 obfuscator	 had	
incorrectly	moved	the	comment	Rz5Wq3OCvuqsA30uaEY0Evc95AIn	from	its	original	line	into	a	separate	new	line	
without	the	//	:	
int k = ((5*(1*1+0)+2)*((2*(1*1+0)+0)*(1*(1*1+0)+0)+0)+(3*(2*1+0)+0)); //
Rz5Wq3OCvuqsA30uaEY0Evc95AIn
Thus,	MR1.2	had	detected	a	bug	in	Cobfusc.	

MR2.	 MR2	 states	 that,	 when	 an	 obfuscator	 runs	 at	 different	 times	 for	 the	 same	 program,	 the	 output	
programs	should	be	equivalent.	Given	 a	 C	 source	 program,	 Obfuscator-LLVM	 can	 be	 enabled	 by	 running	
Clang,	LLVM’s	front	end	compiler,	to	obtain	obfuscated	and	compiled	binary	code.	In	Figure	2a,	line	1	shows	
a	 source	 program	 PBP.c	 compiled	 by	 Clang	 with	 command	 line	 parameters	 enabling	 obfuscation.	 The	
compiled	obfuscated	executable	program	(a.out)	was	 run	 in	 line	2	with	an	 input	of	10000022,	producing	
the	 output	 10000022	 in	 line	 3.	 Figure	 2a	 shows	 a	 behavioral	 inconsistency	 in	 the	 compiled	 obfuscated	
executable	programs,	which	produced	an	output	of	10000022	in	lines	3	and	9,	and	14195494	in	line	6,	with	
the	same	procedure	of	obfuscation,	compilation,	and	execution.		Figure	2b	shows	that	when	Clang	was	run	
without	 enabling	 obfuscation,	 the	 compiled	 executable	 programs	 produced	 identical	 outputs	 (lines	 3,	 6,	
and	9).	
	

	
(a) 																																																																																																														(b)	

Figure	2.	Results	of	Clang	compilation	of	the	PBP.c	program	to	generate	binary	code	a.out	when	obfuscation	
was	(a)	enabled	and	(b)	disabled.	In	(a),	Clang	did	not	generate	behaviorally	equivalent	binary	code.	Clang	
ran	the	compiled	obfuscated	executable	program	(a.out)	in	line	2	with	an	input	of	10000022,	producing	the	
output	in	line	3	of	10000022.	After	the	same	procedure	of	obfuscation,	compilation,	and	execution	(lines	4	
and	 5),	 the	 output	was	 14195494	 in	 line	 6.	 In	 (b),	 Clang	 consistently	 produced	 an	 output	 of	 14195494.	
(Results	are	from	Obfuscator	LLVM	version	3.4)	

	
The	issue	was	caused	by	five	PBP.c	statements:	 int i; int j; i=atoi(argv[1]); i=i+j; printf("%d\n",i); i	is	initialized	with	

the	 input	 value	 (10000022	 in	 Figure	 2)	 and	 then	 updated	 by	 the	 statement	 i=i+j;—j	 is	 used	 without	
initialization	and,	therefore,	the	value	of	i	after	this	statement	cannot	be	predicted.	This	value	of	i	is	printed	
by	the	printf	statement.	Figure	2a	does	not	indicate	whether	the	output	10000022	or	14195494	is	wrong,	but	
instead	shows	 that	 the	executable	programs	generated	 for	 the	 same	 input	program	are	not	behaviorally	
equivalent.	

6
	

We	 further	 investigated	 this	 issue	 by	 again	 using	 Clang	 to	 compile	 PBP.c	 but	 without	 enabling	 the	
obfuscation	 function.	 Figure	2b	 shows	 the	 result.	 The	 compiled	executable	programs	 (a.out)	 consistently	
produced	14195494,	regardless	of	the	number	of	times	we	ran	the	compiler.	

MR3.	MR3	involves	checking	that	obfuscated	source	files	based	on	the	same	input	source	file	are	consistent.	
We	ran	CXX-OBfus	twice	on	the	same	source	code	to	generate	two	obfuscated	output	files.	Figure	3a	shows	
an	 excerpt	 of	 the	 source	 code	 before	 obfuscation;	 Figures	 3b	 and	 3c	 show	 an	 inconsistency	 in	 the	
obfuscated	 code	 after	 one	 and	 two	 runs.	 Although	 the	 obfuscation	 rules	 of	 Stunnix	 are	 unknown,	 any	
inconsistent	behavior	is	undesirable.	
	

	
(a) 																																	(b)																																																													(c)	

Figure	3.	Detecting	an	inconsistency	in	the	Stunnix	CXX-Obfus	obfuscator	(version	4.2).	If	the	(a)	original	
source	code	is	obfuscated	in	one	run,	it	should	be	obfuscated	in	other	runs	so	that	any	confidential	
information	is	always	protected.	In	(b),	the	results	of	the	first	run,	line	6	is	the	same	as	line	6	in	the	original	
code,	but	in	(c),	the	results	of	the	second	run,	line	6	is	obfuscated.	
	

Detecting Web Failures

In	our	evaluation	of	MT	for	website	validation,	we	identified	a	simple	MR	from	the	perspective	of	website	
users	rather	than	developers:	When	different	users	log	onto	a	(local)	computer	using	different	usernames,	
they	should	always	be	able	to	follow	the	same	steps	to	navigate	to	the	website	and	click	on	the	Internet	
banking	login	button—changing	usernames	on	a	local	computer	should	not	affect	access,	as	long	as	all	the	
users’	 account	 settings	 are	 standard.	 During	 testing,	we	 automatically	 captured	 screenshots	 of	 different	
user	 sessions	and	 compared	 them	 to	 identify	potential	 issues	 in	 the	website	GUI.	 The	use	of	 screenshot	
comparisons	in	Web	testing	has	been	documented	as	a	viable	method.[16]	

Figure	4	shows	an	Internet	banking	login	failure	that	our	test	driver	automatically	detected.	Figure	4a	is	
the	result	of	a	tester	 logging	onto	the	 local	computer,	an	Acer	Chromebook	with	standard	settings,	using	
the	default	guest	account.	The	user	successfully	opened	the	NAB	website	using	the	Chrome	browser,	and	
successfully	 clicked	 on	 the	 red	 Login	 button.	 However,	 when	 the	 tester	 logged	 onto	 the	 same	 Acer	
Chromebook	with	a	different	username	and	then	used	the	same	browser	to	open	the	same	website	(the	
environment	settings	were	all	standard),	an	Internet	banking	login	failure	occurred.	
	

	
(a) 																																																																													(b)	

7
	

Figure	4.	Detection	of	a	login	failure	in	the	National	Australia	Bank	(NAB)	Internet	banking	website.	(a)	
Normal	Internet	banking	login	with	local	“guest”	username	and	(b)	failure	with	a	local	non-guest	username.	
When	the	tester	logged	onto	the	same	Acer	Chromebook	with	a	nonguest	username	and	employed	the	
same	browser,	the	website	GUI	did	not	display	correctly,	and	the	tester	could	not	click	on	either	the	Login	
button	or	the	grey	Login	link.		
	
Although	developers	might	argue	that	this	is	not	a	verification	bug—because	the	NAB	website	was	not	
designed	to	support	this	platform	and	configuration—it	is	obviously	a	validation	problem	from	the	user’s	
perspective.		

MT and Negative Testing

MT	has	considerable	potential	 to	guide	negative	 testing	 to	detect	security	vulnerabilities.	To	explore	 this	
idea,	we	used	MT	to	detect	the	infamous	Heartbleed	bug.		

The Heartbleed bug
The	Heartbleed	bug	is	probably	the	most	widely	known	cybersecurity	breach	in	recent	years,[1]	appearing	
in	 the	 OpenSSL	 implementation	 of	 the	 Transport	 Layer	 Security	 (TLS)	 and	 Datagram	 Transport	 Layer	
Security	 (DTLS)	 Heartbeat	 Extension	 specified	 in	 RFC	 6520.	 As	 shown	 in	 Figure	 5,	 a	 Heartbeat	 protocol	
message	 consists	 of	 type,	 payload,	 padding,	 and	 payload_length,	 with	 the	 statement	 opaque

payload[HeartbeatMessage.payload_length];	 meaning	 that	 the	 actual	 payload	 length	must	 equal	 payload_length.	 When	
implementing	this	protocol,	the	programmer	assumed	that	the	relationship	between	payload	and	payload_length	
would	 always	 hold	 true	 and	 therefore	 did	 not	 include	 any	 bounds-checking	 code.	 The	 core	 OpenSSL	
developer	who	 reviewed	 the	 implementation	had	 the	 same	wrong	assumption	and	also	did	not	 find	 the	
bug.	Both	made	the	same	common	mistake:		they	overlooked	the	possibility	that	some	parameters	can	take	
a	value	outside	the	expected	range.	
	

	

Figure	5.	Excerpt	from	Section	4	of	RFC	6520	(http://tools.ietf.org/html/rfc6520).	MT	holds	great	potential	
for	 guiding	 negative	 testing	 to	 verify	 implementations	 of	 security-related	 protocols	 like	 the	 Heartbeat	
protocol.	

	

Detecting the Heartbleed bug using MT
To	 identify	MRs	 to	 test	 implementations	 of	 the	 Heartbeat	 protocol	 messages	 (Figure	 5),	 the	 tester	 will	
typically	ask,	 “What	 if	 I	 change	some	of	 the	parameter	values?”	Suppose	 that	 the	source	 test	 case	 is	 t	 =	
(type1,	 length1,	 payload1,	 padding1),	 where	 type1,	 length1,	 payload1,	 and	 padding1	 represent	 concrete	
parameter	values.	To	identify	an	MR,	the	tester	will	ask:	

• What	if	I	change	type1	to	a	different	value?	
• What	if	I	change	length1	to	a	different	value?	
• What	if	I	change	payload1	to	a	different	value?	

8
	

• What	if	I	change	padding1	to	a	different	value?	
• What	if	I	change	two	or	more	parameters?	

	
Asking	these	questions	will	lead	the	tester	to	think	beyond	the	normal	range	of	parameter	values	or	value	
combinations,	 leading	 to	 negative	 testing.	 For	 example,	 question	 2	 should	 stimulate	 thoughts	 that	
payload_length	might	not	necessarily	equal		payload,	and	prompt	the	construction	of	a	follow-up	test	case	tʹ	that	
increases	 the	 value	 of	 payload_length	 while	 keeping	 the	 other	 parameters	 unchanged.	 The	MR	will	 require	
different	behavior	for	t	and	tʹ	(per	RFC	6520):	the	PUT	should	return	a	normal	message	for	t,	but	discard	tʹ.	
When	 the	Heartbleed	 bug	 is	 tested	 against	 this	MR,	 it	will	 have	 the	 same	behavior	 for	 both	 t	 and	 tʹ	 by	
always	returning	a	message	(buffer),	which	will	violate	the	MR,	hence	revealing	a	failure.	

The	Heartbleed	bug	could	also	be	detected	by	using	a	fuzzer	in	conjunction	with	some	dynamic	analysis	
tools	 performing	 run-time	monitoring.	 However,	 these	 tools	 are	 restricted	 to	 predefined	memory	 error	
types,[1]	giving	MT	a	distinct	advantage	in	negative	testing	because	MT	can	detect	system	crashes	(in	which	
MRs	will	 always	be	violated)	and	other	error	 types,	 such	as	 incorrect	or	 inconsistent	behavior	 caused	by	
logic	errors.	

Previous	work	 has	 shown	 the	 feasibility	 of	 combining	MT	 and	 fuzzing.[7]	When	 testing	Microsoft	 Live	
Search,	a	random	string	GLIF	was	issued,	for	which	the	search	engine	returned	11,783	results.	Owing	to	the	
sheer	volume	of	data	on	the	Internet,	it	was	difficult	to	assess	the	correctness	of	the	results.	Nevertheless,	
by	referring	to	an	MR,	a	follow-up	test	case	GLIF OR 5Y4W	was	generated	(where	OR	is	the	Boolean	operator,	
not	a	search	term),	and	the	search	engine	returned	zero	results.	This	was	obviously	a	failure,	as	the	number	
of	Web	 pages	 containing	 either	 the	 string	GLIF	 or	 the	 string	 5Y4W	 should	 be	 no	 less	 than	 11,783.	When	
generating	 this	 incorrect	 result,	 the	 search	 engine	 did	 not	 crash.	 The	 failure,	 therefore,	 could	 not	 be	
detected	 by	 fuzzing	 or	 dynamic	 analysis	 (or	 a	 combination	 of	 the	 two).	 Nevertheless,	MT	 detected	 the	
failure	by	comparing	the	outputs	of	multiple	executions.	
	

We	have	shown	that	MT	can	help	alleviate	the	oracle	problem,	detect	Web	failures,	and	enable	negative	
testing	of	security-related	functionality	and	behavior.	In	our	evaluations,	MT	successfully	revealed	real-life	
bugs	 that	other	 testing	methods	 failed	to	detect,	not	only	because	MT	 is	possible	without	an	oracle,	but	
also	 because	MT	 is	 based	 on	 a	 perspective	 that	 conventional	 testing	 techniques	 do	 not	 use.	MT	 is	 not	
necessarily	 always	 better	 than	 other	 testing	methods,	 but	 it	 does	 show	 the	 effectiveness	 of	 conducting	
testing	from	diverse	perspectives—thus	mirroring	the	diversity	of	programming	mistakes.	

Possible	 directions	 for	 future	 research	 include	 identifying	 ways	 to	 use	 MRs	 to	 perform	 automatic	
validation	to	detect	security	issues	that	concern	users,	and	exploring	how	users	can	employ	MRs	to	specify	
their	security	requirements.	One	of	the	greatest	advantages	of	MRs	is	that,	once	they	are	identified,	testing	
can	be	fully	automated.	

Additional	research	is	also	needed	to	develop	new	test	quality	and	adequacy	criteria	involving	MRs	in	the	
context	of	security	testing,	which	can	complement	existing	criteria.	We	anticipate	that	diversity	will	be	an	
underlying	principle—from	the	selection	of	 testing	and	analysis	methods,	 to	 the	 formulation	of	 test-case	
generation	 strategies	 and	 results-verification	 approaches,	 all	 the	 way	 to	 the	 establishment	 of	 quality	
standards.	

References
	 1.	 A.	Vassilev	and	C.	Celi,	“Avoiding	Cyberspace	Catastrophes	through	Smarter	Testing,”	Computer,	vol.	47,	no.	10,	2014,	pp.	102–106.	

	 2.	 E.T.	Barr	et	al.,	“The	Oracle	Problem	in	Software	Testing:	A	Survey,”	IEEE	Trans.	Software	Eng.,	vol.	41,	no.	5,	2015,	pp.	507–525.	

	 4	 V.	Okun	and	E.	Fong,	“Fuzz	Testing	for	Software	Assurance,”	CrossTalk–J.	Defense	Software	Eng.,	vol.	28,	no.	2,	2015,	pp.	35–37.	

	 9.	 Z.Q.	 Zhou,	 S.	 Xiang,	 and	 T.Y.	 Chen,	 “Metamorphic	 Testing	 for	 Software	 Quality	 Assessment:	 A	 Study	 of	 Search	 Engines,”	 IEEE	 Trans.	
Software	Eng.,	vol.	42,	no.	3,	2016,	pp.	264−284.	

	 10	 S.	 Segura	 et	 al.,	 “A	 Survey	 on	 Metamorphic	 Testing,”	 IEEE	 Trans.	 Software	 Eng.,	 to	 appear	 (manuscript	 available	 at	

9
	

www.cs.ecu.edu/reu/reufiles/read/metamorphicTesting-16.pdf).	.	

	 8.	 H.	Liu	et	al.,	“How	Effectively	Does	Metamorphic	Testing	Alleviate	the	Oracle	Problem?”	IEEE	Trans.	Software	Eng.,	vol.	40,	no.	1,	pp.	4–
22,	2014.	

	 11.	 T.Y.	 Chen	 et	 al,	 “A	 Revisit	 of	 Three	 Studies	 Related	 to	 Random	Testing,”	Science	 China	 Information	 Sciences,	 vol.	 58,	 no.	 5,	 2015,	 pp.	
052104:1–052104:9.	

	 12.	 M.	Lindvall	et	al.,	“Metamorphic	Model-Based	Testing	Applied	on	NASA	DAT–An	Experience	Report,”	Proc.	37th	IEEE	Int’l	Conf.	Software	
Eng.	(ICSE	15),	2015,	pp.	129–138.	

	 3.	 C.	Brubaker	et	al.,	“Using	Frankencerts	for	Automated	Adversarial	Testing	of	Certificate	Validation	in	SSL/TLS	Implementations,”	Proc.	IEEE	
Symp.	Security	and	Privacy,	2014,	pp.	114–129.	

	 5.	 T.Y.	 Chen,	 T.H.	 Tse,	 and	 Z.Q.	 Zhou,	 “Semi-proving:	 An	 Integrated	Method	 for	 Program	 Proving,	 Testing,	 and	 Debugging,”	 IEEE	 Trans.	
Software	Eng.,	vol.	37,	no.	1,	2011,	pp.	109–125.	

	 13.	 V.	Le,	M.	Afshari,	and	Z.	Su,	“Compiler	Validation	via	Equivalence	Modulo	Inputs,”	Proc.	35th	ACM	SIGPLAN	Conf.	Programming	Language	
Design	and	Implementation	(PLDI	14),	2014,	pp.	216–226.	

	 14.	 J.	Regehr,	“Finding	Compiler	Bugs	by	Removing	Dead	Code,”	20	June	2014;	http://blog.regehr.org/archives/1161.	

	 15.	 M.	Velez,	“Finding	and	Understanding	Bugs	in	Obfuscators,	2013;	https://bitbucket.org/martinvelez/obfuscator_bugs_paper/downloads.	

	 16.	 E.	Selay,	Z.Q.	Zhou,	and	J.	Zou,	“Adaptive	Random	Testing	for	Image	Comparison	in	Regression	Web	Testing,”	Proc.	IEEE	Int’l	Conf.	Digital	
Image	Computing:	Techniques	and	Applications	(DICTA	14),	2014,	pp.	1–7.	

	 7.	 Z.Q.	Zhou	et	al.	“Automated	Functional	Testing	of	Online	Search	Services,”	Software	Testing,	Verification	and	Reliability,	vol.	22,	no.	4,	
2012,	pp.	221–243.	

	 6.	 T.Y.	Chen,	T.H.	Tse,	and	Z.	 Zhou,	 “Fault-Based	Testing	 in	 the	Absence	of	an	Oracle,”	Proc.	25th	Ann.	 IEEE	 Int’l	Computer	Software	and	
Applications	Conf.	(COMPSAC	01),	2001,	pp.	172–178.	

	

Tsong Yueh Chen is a professor of software engineering at Swinburne University of Technology, Australia. His main research
interest is in software testing. Chen received his PhD from the University of Melbourne. He is a Senior Member of IEEE. Contact
him at tychen@swin.edu.au.

Fei-Ching Kuo is a senior lecturer at Swinburne University of Technology, Australia. Her current research interests include software
analysis, testing, debugging, and repair. Kuo received the PhD degree from Swinburne. She is a member of the IEEE. Contact
her at dkuo@swin.edu.au.

Wenjuan Ma is an MPhil student in the School of Computing and Information Technology at the University of Wollongong (UoW).
Her research interests include software testing and analysis. Ma received a BS in management from Beijing University of
Chemical Technology. Contact her at wm230@uowmail.edu.au.

Willy Susilo is a professor in and head of the School of Computing and Information Technology at the UoW. His research interests
include cryptography and network and cyber security. Susilo received a PhD in computer science with an emphasis on
cryptography from UoW. He is a Senior Member of IEEE. Contact him at wsusilo@uow.edu.au.

Dave Towey is an assistant professor in the School of Computer Science at the University of Nottingham Ningbo China. His
research interests include software testing, computer security, and technology-enhanced education. Towey received a PhD in
computer science from the University of Hong Kong. He is a member of IEEE and ACM. Contact him at
dave.towey@nottingham.edu.cn.

Jeffrey Voas is a computer scientist at the US National Institute of Standards and Technology. His research interests include the
Internet of Things and fundamental computer science shortcomings. Voas received a PhD in computer science from the College
of William and Mary. He is a contributing editor for Computer’s Security column and a Fellow of IEEE and the American
Association for the Advancement of Science (AAAS). Contact him at j.voas@ieee.org.

Zhi Quan Zhou is a senior lecturer in software engineering at UoW. His research interests include software testing and debugging,
security testing, and citation analysis. Zhou received a PhD in software engineering from the University of Hong Kong. Zhou is
the corresponding author for this article. Contact him at zhiquan@uow.edu.au.

