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Gauge-invariant initial conditions and early time perturbations in quintessence universes

Michael Doran,1 Christian M. Müller,2 Gregor Scha¨fer,2 and Christof Wetterich2
1Department of Physics and Astronomy, 6127 Wilder Laboratory, Hanover, New Hampshire 03755, USA

2Institut für Theoretische Physik, Philosophenweg 16, 69120 Heidelberg, Germany
~Received 9 May 2003; published 18 September 2003!

We present a systematic treatment of the initial conditions and evolution of cosmological perturbations in a
universe containing photons, baryons, neutrinos, cold dark matter, and a scalar quintessence field. By formu-
lating the evolution in terms of a differential equation involving a matrix acting on a vector comprised of the
perturbation variables, we can use the familiar language of eigenvalues and eigenvectors. As the largest
eigenvalue of the evolution matrix is fourfold degenerate, it follows that there are four dominant modes with
a nondiverging gravitational potential at early times, corresponding to adiabatic, cold dark matter isocurvature,
baryon isocurvature and neutrino isocurvature perturbations. We conclude that quintessence does not lead to an
additional independent mode.

DOI: 10.1103/PhysRevD.68.063505 PACS number~s!: 98.80.Bp, 98.80.Cq

I. INTRODUCTION

The advent of high precision data@1# of the cosmic mi-
crowave background~CMB! anisotropies permits detailed
tests of the composition and shape of the primordial density
fluctuations. The most popular models of inflationary cos-
mology predict adiabatic fluctuations@2–4#. More elaborate
models lead to an admixture of adiabatic and isocurvature
fluctuations@5,6#. The time evolution of adiabatic and nona-
diabatic fluctuations is well understood for a universe com-
posed of radiation, baryons, cold dark matter~CDM! and
neutrinos@7#. In the context of quintessence@8–10#, the be-
havior of the field fluctuation has been studied in several
works @11–15#. Initial conditions have been proposed in@16#
for the case of negligible quintessence contribution in the
early Universe. We present here a systematic treatment of
initial conditions for quintessence models which differs from
that of @16# in approach and interpretation.

Our basic setting assumes that small deviations from ho-
mogeneity are generated during a very early stage of the big
bang, typically an inflationary epoch. During the following
radiation dominated period the wavelength of the relevant
fluctuations is far outside the horizon. Apart from this, we
will not use any further constraint on the primordial fluctua-
tions. Only the spectra of a certain number of ‘‘dominant’’
modes can possibly influence events such as emission of the
CMB and its anisotropies since the other modes decay. The
information about these dominant modes therefore consti-
tutes the initial conditions for practical purposes. Primordial
information beyond the dominant modes is effectively lost
and not observable. The detailed time of specification of the
initial conditions is therefore irrelevant as long as it is much
shorter than the time of matter-radiation equality.

During the period relevant for the discussion of the initial
conditions the universe is radiation dominated. However, our
approach allows for the presence of scalar fields which
evolve like radiation at early times or are subdominant. Con-
sequently, our results hold for a wide class of quintessence
models, including those with non-negligibleVq at early
times @17#. In fact, we only use a ‘‘tracking’’ property@18#
for the background of homogenous quintessence, namely

that its equation of statewq5pq /rq is almost constant and
determined only by the energy densities of the radiation and
matter components. The parameterswq and Vq512Vm
2Vn2Vg will therefore be the only parameters of the quin-
tessence model that influence the early time evolution of
small fluctuations. This makes our analysis model indepen-
dent to a large extent.

We will formulate the evolution equations for the pertur-
bation variables as a first order differential matrix equation

d

d ln x
U5A~x!U, ~1!

where the vectorU contains all perturbation variables and
the matrixA(x) encodes the evolution equations. In doing
so, we relate the problem of finding initial conditions and
dominant modes to the familiar language of eigenvalues and
eigenvectors. This formulation makes ‘‘mode-accounting’’
transparent by counting the degeneracy of the largest eigen-
value. We find four dominant modes that remain regular at
early times. For physical reasons, we choose a basis using
adiabatic, CDM isocurvature, baryon isocurvature and neu-
trino isocurvature initial conditions. As we will show, adia-
baticity between CDM, baryons and photons implies adiaba-
ticity of quintessence. There is therefore no pure
quintessence isocurvature mode. In addition, using the ma-
trix formulation reveals facets of the modes that otherwise
remain obscured.

In order to avoid the appearance of gauge modes, we will
use the gauge-invariant formalism@19–22#. In contrast to
earlier work, we find it more appropriate to specify the initial
conditions and time evolution of the quintessence field in
terms of the gauge-invariant density contrast and velocity,
thus unifying the language for all species. As anticipated, the
quintessence density perturbation remains constant at super-
horizon scales for adiabatic initial conditions. In contrast to
this, the field fluctuation follows a simple power law in con-
formal time that only depends on the quintessence equation
of state.

We will proceed as follows: in Sec. II we give the gauge-
invariant perturbation equations for a radiation-dominated
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universe containing radiation, cold dark matter, neutrinos,
baryons in the tight coupling limit and tracking quintessence.
We express the evolution in matrix form in Sec. II B. In Sec.
III A, we classify the modes and determine them in Secs.
III B, III C and III D. To illustrate the effect of nonadiabatic
contributions to the CMB spectrum, we plot a few spectra for
different initial conditions in Sec. IV. A summary of our find-
ings is given in Sec. V. In Appendix A, we derive the pertur-
bation equations used in detail, while Appendixes B and C
discuss supplementary issues.

II. THE PERTURBATION EQUATIONS

In the following we adopt the gauge-invariant approach as
devised by Bardeen@19#. It is not difficult to obtain the ini-
tial conditions in any gauge from the corresponding gauge-
invariant quantities given here. In Appendix A, we summa-
rize the definitions of the perturbation variables and sketch
the derivation of the evolution equations. It turns out that the
evolution is best described as a function ofx[kt, wheret is
the conformal time andk is the comoving wave number of
the mode. We assume that at early times, the universe ex-
pands as if radiation dominated. This assumption is well jus-
tified for small Vq at early times, as well as for potentials
that are essentially exponentials at the time of interest, re-
gardless ofVq . The assumption is certainly not justified for
models in which quintessence is dominating the universe at
early times with equation of statewqÞ1/3. For such~slightly
exotic! models, the following steps would need to be modi-
fied.

A. Full set of equations

Assuming tracking quintessence we obtain the following
set of equations~for a derivation, see Appendix A!:

Dc852x2Ṽc , ~2!

Ṽc8522Ṽc1C, ~3!

Dg852 4
3 x2Ṽg , ~4!

Ṽg85 1
4 Dg2Ṽg1VnP̃n12C, ~5!

Db852x2Ṽg , ~6!

Dn852 4
3 x2Ṽn , ~7!

Ṽn85 1
4 Dn2Ṽn2 1

6 x2P̃n1VnP̃n12C, ~8!

P̃n85 8
5 Ṽn22P̃n , ~9!

Dq853~wq21!FDq13~11wq!$C1VnP̃n%

1H 32
x2

3~wq21!J ~11wq!ṼqG , ~10!

Ṽq853VnP̃n1
Dq

11wq
1Ṽq14C, ~11!

with the gauge-invariant Newtonian potentialC given by

C52

(
a5c,b,g,n,q

Va@Da13~11wa!Ṽa#

(
a5c,b,g,n,q

3~11wa!Va1
2x2

3

2VnP̃n .

~12!

We denote the derivatived/d ln x with a prime. The gauge-
invariant energy density contrastsDa , the velocitiesṼa and
the shearP̃n are the ones found in the literature@19,20,22#,
except that we factor out powers ofx from the velocity and
shear definingṼ[V/x and P̃n[x22Pn . This factoring out
leads to the particularly simple form of the system of equa-
tions for x!1 ~see also Appendix A!. It does, however, ex-
clude modes with divergingC at early times such as a neu-
trino velocity mode@23#. The indexa runs over the five
species in our equations, namely cold dark matter, baryons,
photons, neutrinos and quintessence, denoted with the sub-
script q. We assume tight coupling between photons and
baryons. The equation of statew5 p̄/ r̄ takes on the values
wc5wb50, wg5wn51/3 andwq is left as a free parameter.
Equations~2!, ~4!, ~6! and ~7! can be regarded as continuity
relations between the density fluctuations and the velocity.
We obtain Eqs.~10! and ~11! from the perturbed Klein-
Gordon equation of the quintessence scalar field expressed in
terms ofDq andVq , the energy density and velocity pertur-
bations as defined in Appendix A.

B. Matrix formulation and dominant modes

Conceptually, it is convenient to note that the above set of
equations can be concisely written in matrix form according
to Eq. ~1! where the perturbation vector is defined as

UT[~Dc ,Ṽc ,Dg ,Ṽg ,Db ,Dn ,Ṽn ,P̃n ,Dq ,Ṽq!. ~13!

The matrixA(x) can easily be read off from Eqs.~2!–~11!.
This enables us to discuss the problem of specifying initial
conditions in a systematic way.

The initial conditions are specified for modes well outside
the horizon, i.e.,x!1. In this case, the right hand side of
Eqs.~2!, ~4!, ~6! and~7! can be neglected, providedṼa does
not diverge}x22 or faster forx2→0. The evolution matrix
A(x) loses any explicitx dependence forx2→0. Yet, it still
depends onx via terms involvingVc , Vb , andVq . By our
assumptions on quintessence, the term involvingVq is either
a constant~for wq51/3) or negligible~yet, in Appendix C,
we extend the treatment to include models with considerable
Vq andwqÞ1/3!. In both casesVq can be approximated by
a constant (Vq50 for wq,1/3) andVc , Vb vanish}x. In
leading order, the matrixA becomes thereforex independent
for very early times. In fact, the general solution to Eq.~1! in
the ~ideal! case of a truly constantA would be
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U~x!5(
i

ci S x

x0
D l i

U( i ), ~14!

whereU( i ) are the eigenvectors ofA with eigenvaluel i and
the time independent coefficientsci specify the initial con-
tribution of U( i ) towards a general perturbationU. As time
progresses, components corresponding to the largest eigen-
values l i will dominate. Compared to these ‘‘dominant’’
modes, initial contributions in the direction of eigenvectors
U( i ) with smaller Re(l i) decay. It therefore suffices to
specify the initial contributionci for the dominant modes, if
one is not interested in very early time behavior shortly after
inflation. In our case, the characteristic polynomial ofA(x)
indeed has a fourfold degenerate eigenvaluel50 in the
limit x2→0, independent ofVc , Vb and Vq .1 While it is
not feasible to obtain the remaining six eigenvalues by ana-
lytic means, we have checked numerically for a wide range
of Vg , Vn , Vb , Vc , Vq andwq that the remaining eigen-
values have indeed negative real parts and contributions
from the corresponding eigenvectors towards a general per-
turbationU will therefore decay according to Eq.~14!. We
can improve the analytic description of the dominant modes
by taking corrections}x into account.

As Vc}Vb}x, it is appropriate to splitA(x) according to
the scaling withx,

A5A01xA1 , ~15!

whereA0 and A1 are constant andxA1 contains the small,
time-dependent corrections from terms involvingVc and
Vb . We may also write2 the eigenvectors as a series inx,

U5U01x U1 . ~16!

Inserting Eqs.~15!, ~16! in Eq. ~1!, we get

A0U050, ~17!

and

U152~A021!21A1U0 . ~18!

Equation~18! is easy to solve, onceU0 has been determined
~we discuss the possibility of a vanishingU0 in Appendix C!.
We see from Eq.~17! that to constant order the solutions of
Eq. ~1! are indeed given by eigenvectors to the eigenvalue
l50. We should emphasize that the vectorsU0 do not
evolve in time if their corresponding eigenvalues arel50.
Thus, the perturbations remain constant in the super-horizon
regime during radiation domination in this approximation. If
we include the next-to-leading order contribution toU, the
eigenvectors do evolve and we can no longer apply Eq.~14!.
These corrections are, however, small as long as we are deep
in the radiation dominated era due to the small contributions

of baryons, radiation and quintessence during this era. Given
a set of initial conditions in the form of coefficients for the
four dominating modes atzinitial we can find the perturba-
tions at some later time~provided the modes are still super-
horizon sized and we have radiation domination!. In leading
order, the coefficients will remain the same while in next-to-
leading order we can use the evolution ofU to compute the
coefficients forz,zinitial . If initial conditions are specified
with accuracy of next-to-leading order one therefore has to
specify zinitial as well. In leading order this is unnecessary
for z in a wide range long before last scattering.

C. Constraint equations to leading order

Equation~17! is equivalent to setting the left hand side of
Eqs.~2!–~11! equal to zero and usingVc5Vb5x250. Then
Eqs.~2!, ~4!, ~6! and~7! are automatically satisfied~provided
Ṽa does not diverge}x22 or faster!, and Eqs.~3!, ~5!, ~8!–
~11! yield non-trivial constraints for the components ofU0:

2Ṽc2C50, ~19!

~1/4!Dg2Ṽg1VnP̃n12C50, ~20!

~1/4!Dn2Ṽn1VnP̃n12C50, ~21!

~8/5!Ṽn22P̃n50, ~22!

3VnP̃n1Dq /~11wq!13Ṽq13C50, ~23!

3VnP̃n1Dq /~11wq!1Ṽq14C50. ~24!

In the above, all quantities are considered only to constant
order. ~We have omitted the subscript ‘‘0’’ for notational
convenience.! In particular, there is no contribution of CDM
and baryons toC at constant order. Note that, apart from
wq , no model-specific parameters occur in any of these
equations so the modes will be independent of the type of
quintessence as long as the scalar field is in a regime with
approximately constantwq . We note that forwq substan-
tially smaller than 1/3 the quintessence fractionVq changes
with time. By the assumption that the universe expands as if
radiation dominated, the quintessence contribution would
however be small in this case and its contribution toC can
be neglected~see Appendix C for an extended discussion!.

We mention that forwq51/3, quintessence evolves the
same way as radiation, thereforeVq does not change in this
case. Ifwq521/3, quintessence has the same influence on
the scale factora as a curvature term in an open universe.
However, the geometry is still flat and one can distinguish an
open universe from this quintessence model by measuring
the position of the first acoustic peak in the CMB.

III. THE MODES IN DETAIL

A. Classifying the modes

While any basis for the subspace spanned by the eigen-
vectors with eigenvaluel50 can be used to specify the

1For wq51 we find another eigenvalue withl50. We will ignore
this special case in what follows.

2This form is not an ansatz, but dictated by Eq.~1!, once the
dependence ofA(x) on x is given.
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initial conditions, it is still worthwhile to use a basis that is
physically meaningful. Following the existing literature, we
use the gauge-invariant entropy perturbation@20#

Sa:b5
Da

11wa
2

Db

11wb
, ~25!

between two speciesa andb, as well as the gauge-invariant
curvature perturbation on hyper-surfaces of uniform energy
density of speciesa @4,5,24,25#

za5S HL1
1

3
HTD1

dra

3~11wa!r̄a

, ~26!

in order to classify the physical modes. On slices of uniform
total energy density, the curvature perturbation is corre-
spondingly

z tot5S HL1
1

3
HTD1

(
a

dra

(
a

3~11wa!r̄a

. ~27!

In our variables, these expressions take on the manifestly
gauge-invariant form

za5
Da

3~11wa!
, z tot5

(
a

DaVa

(
a

3~11wa!Va

. ~28!

If z tot50, energy density perturbations do not generate cur-
vature. It is therefore clear that such a perturbation is a per-
turbation in the local equation of state. One should note that
the definition ofz tot is different from that of@21#:

zMFB5
2

3

H 21Ċ1C

~11w!
1C. ~29!

However, one may verify that this quantity coincides with
z tot in the super-horizon limit for a flat universe@26#.

B. The adiabatic mode

The first ~rather intuitive! perturbations one would try to
find are adiabatic perturbations, which are specified by the
adiabaticity conditionsSa:b50 for all pairs of components.

In our case, this results in 11 constraints3 for the ten compo-
nents ofU0. It is a priori not clear that this has a solution so
we will not include quintessence in the adiabaticity require-
ment. Requiring adiabaticity between CDM, baryons, neutri-
nos and radiation,

Dn5Dg5 4
3 Dc5 4

3 Db , ~30!

and using the six constraint Eqs.~19!–~24!, we obtain

1
Dc

Ṽc

Dg

Ṽg

Db

Dn

Ṽn

P̃n

Dq

Ṽq

2
adiabatic

5C1
3/4

~25/4!P
1

~25/4!P
3/4

1

~25/4!P
2P

3~11wq!/4

~25/4!P

2 , ~31!

whereP5(1514Vn)21 andC is an arbitrary constant. From
Dq /Dg53(11wq)/4 we conclude that quintessence is auto-
matically adiabatic if CDM, baryons, neutrinos and radiation
are adiabatic, independent of the quintessence model for as
long as we are in the tracking regime. As all components are
non-vanishing, we do not quote the next to leading order
contributions fromx U1.

C. Neutrino isocurvature

Having found the adiabatic vector, one could specify three
additional linearly independent vectors satisfying the con-
straint Eqs.~19!–~24!. This would complete the basis. It is,
however, appropriate to choose modes that may be generated
by physical processes. These modes are in general not or-
thogonal but span the eigenspace ofl50. Modes that may
be generated by physical processes are isocurvature modes.
A given mode is an isocurvature mode, if the gauge-invariant
curvature perturbationz tot vanishes, i.e.z tot50. In order to
distinguish different isocurvature modes from one another,
we require that the other species are adiabatic with respect to
each other, i.e.Sa:b50 except for quintessence and one spe-
ciess, which has non-vanishingSs:g .

Let us first consider the neutrino isocurvature mode. For
this, we require that CDM, baryons and radiation are adia-

3Without requiring quintessence to be adiabatic, we have six con-
straints from Eqs.~19!–~24! plus three constraints from Eq.~30!
plus one constraint from the overall normalization, which is fixed
by choosing a specific value forDg .
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batic, while Sn:gÞ0 and that the gauge-invariant curvature
perturbation vanishes:

z tot50, Dc5Db5 3
4 Dg . ~32!

Using this and Eqs.~19!–~24! leads to

1
Dc

Ṽc

Dg

Ṽg

Db

Dn

Ṽn

P̃n

Dq

Ṽq

2
neutrino iso

5C1
3/4

VgP
1

~Vg1Vn1 15
4 !P

3/4

2Vg /Vn

2 15
4 PVg /Vn

23PVg /Vn

0

VgP

2 . ~33!

It is important to note that we did not require quintessence to
be adiabatic. One can see from the neutrino isocurvature vec-
tor that Dq50, and as a consequence quintessence is not
adiabatic with respect to either neutrinos, radiation, baryons
or CDM. Hence, we could just as well have labeled this
vector ‘‘quintessence isocurvature.’’ We cannot require adia-
baticity between neutrinos, CDM, baryons and radiation and
hope to obtain a ‘‘pure’’ quintessence isocurvature vector
since, as we have seen in the discussion of the adiabatic
mode, these requirements lead to quintessence being adia-
batic as well.

D. CDM isocurvature and baryon isocurvature

The CDM isocurvature mode is characterized bySc:g
Þ0, z tot50 and adiabaticity between photons, neutrinos and
baryons:

z tot50, Dg5Dn5 4
3 Db . ~34!

Using this and Eqs.~19!–~24! yields

U0
T~CDM iso!5~1,0,0,0,0,0,0,0,0,0!. ~35!

This vector fulfills z tot501O(Vc), which is in line with
our approximation sinceVc!1. Similarly, for the baryon
isocurvature mode, we requireSb:gÞ0, z tot50 and adiaba-
ticity between photons, neutrinos and baryons. The resulting
vector reads

U0
T~baryon iso!5~0,0,0,0,1,0,0,0,0,0!. ~36!

As all but one of the components ofU0 are vanishing for
CDM isocurvature and baryon isocurvature, we use Eq.~18!
to obtain the next to constant order solution for CDM isocur-
vature

1
Dc

Ṽc

Dg

Ṽg

Db

Dn

Ṽn

P̃n

Dq

Ṽq

2
CDM iso

5C1
1

Vc~4Vn215!U/12

0

2~15/4!VcU
0

0

2~15/4!VcU
22VcU

Vc~1512Vn!~11wq!U
VcUV

2 , ~37!

where U5(3014Vn)21 and V5@105245wq14Vn(3wq
21)#/@36(wq21)#. Similarly, we find for baryon isocurva-
ture

1
Dc

Ṽc

Dg

Ṽg

Db

Dn

Ṽn

P̃n

Dq

Ṽq

2
baryon iso

5C1
0

Vb~4Vn215!U/12

0

2~15/4!VbU
1

0

2~15/4!VbU
22VbU

Vb~1512Vn!~11wq!U
VbUV

2 .

~38!

Note that these vectors are not constant sinceVb andVc
both evolve in time. We observe that the corrections toU are
indeed proportional toVc or Vb as expected. This result

FIG. 1. Gauge-invariant energy density perturbationDq and
quintessence field fluctuationX as simulated~straight and dashed-
dotted lines!, compared to the analytic solution of Eqs.~31! and
~B3! ~dashed and dotted lines! as a function of conformal timet for
adiabatic initial conditions. Radiation and matter equality corre-
sponds tot5109 Mpc. The mode fork50.1 Mpc21 shown is and
the cosmological parameters areVb

0h250.022, h50.7, Vm
0 50.3,

Vq
050.7.

GAUGE-INVARIANT INITIAL CONDITIONS AND . . . PHYSICAL REVIEW D 68, 063505 ~2003!

063505-5



holds for all tracking quintessence models withwq51/3 or
wq<0 during the radiation dominated period. For intermedi-
ate values 0,wq,1/3 the deviation from the leading behav-
ior scales}xa, a,1. Obviously, the adiabatic, CDM isocur-
vature, baryon isocurvature and neutrino isocurvature vectors
U0 are linearly independent. We have therefore identified
four modes corresponding to the fourfold degenerate eigen-
value zero ofA(x). These four vectors span the subspace of
dominant modes in the super-horizon limit, and there are no
more linearly independent vectors that satisfy the constraints
~19!–~24!. Arbitrary initial perturbations may therefore be
represented by projecting a perturbation vectorU at initial
time into the subspace spanned by the four aforementioned
vectors, as this is the part of the initial perturbations which
will dominate as time progresses.

Figure 1 demonstrates that the early time behavior is well
described by our analytic formulas. The analytic results
agree very well with the simulation for early times, when the
mode is outside the horizon. In the lower graph, we plot the
equation of statewq . The quintessence model used is param-
etrized by an equation of statewq(a)520.9510.75(1
2a), leading to wq(early)520.2 and according to Eq.
~B3!, X}t0.8. This differs from Ref.@16#.4

We see that including quintessence does not add a new
dominant mode. The two additional modes added by the
fluctuations of the scalar field are both subdominant and de-
cay with negative eigenvaluel i . This is due to the fact that
none of the perturbation equations for quintessence equate to
zero in the super-horizon limit. This holds for non-tracking
quintessence models as well. Let us investigate this in detail.
For all the other fluid components,Da850 in the super-
horizon limit, but for quintessence we get from Eq.~A29!
that Dq8523(cs(q)

2 2wq)Dq23wqGq . For tracking quintes-
sence, we obtain from Eq.~A46! that cs(q)

2 5wq and we find

Dq8523wqGq . ~39!

SinceGq does not vanish except forwq51 @see Eq.~A45!#,
this does not equate to zero.5 Hence, due to the non-
vanishing entropy perturbation of quintessence there is no
additional dominant mode.6

IV. ISOCURVATURE INITIAL CONDITIONS AND THE
CMB

We illustrate the influence of different initial conditions
on the CMB with an example. For an analysis of experimen-
tal data and a possible isocurvature contribution to the CMB
we refer the reader to@27–29#. Here, we merely wish to4In @16# it is stated that the quintessence fluctuation in Newtonian

gauge scales}t2 for adiabatic initial conditions. This does not
agree with our results in Appendix B. Actually, Eq.~101! of @16#
includes a factorw t0, which, interpreted as a dynamical quantity
dw/dt ~and not fixed at some initial timet0), leads to a power law
in t which is then consistent with our result of Appendix B.

5Note thatwq50 does not lead toDq850.
6We have not yet investigated the relationship between decaying

quintessence modes and the background evolution.
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FIG. 2. CMB temperature spectra as a function of multipolel in an early quintessence cosmology. The pure adiabatic~AD!, CDM
isocurvature~CI!, neutrino isocurvature~NI! mode and three different combinations of these dominant modes are plotted. For comparison
with experimental data we also give the WMAP~Wilkinson microwave anisotropy probe! measurements of the CMB@1#. The spectrum of
the pure baryon isocurvature mode is essentially identical to that of the pure CDM isocurvature mode. All spectra have been normalized to
the same power atl 510.
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show the qualitative features of the different modes. We use
a modified version ofCMBEASY @30,31# to compute CMB
spectra corresponding to different initial conditions for an
early quintessence cosmology with parameters as in model A
of @17#. We set the spectral index of the isocurvature modes
identical to the spectral index of the pure adiabatic mode,
ns50.99. The resulting spectra are plotted in Fig. 2. The
spectrum of the pure CDM isocurvature mode decays
quickly when going to small scales as has been found in
previous works@32–34#. The neutrino isocurvature mode
shows prominent peaks at higher multipoles than the adia-
batic mode with different peak ratios. For the mixed initial
conditions with only small isocurvature contribution, the
shape of the curve remains more or less the same. A small
admixture of isocurvature fluctuations leads to a decrease of
power at larger multipoles if the overall normalization is
fixed at l 510. Comparison with the WMAP~Wilkinson mi-
crowave ansotropy probe! data in the same figure shows that
nonadiabatic initial perturbations are strongly constrained.
Clearly, pure isocurvature initial conditions are inconsistent
with CMB observations.

V. CONCLUSION

We have investigated perturbations in a radiation-
dominated universe containing quintessence, CDM, neutri-
nos, radiation and baryons in the tight coupling limit. The
perturbation evolution has been expressed as a differential
equation involving a matrix acting on a vector comprised of
the perturbation variables. This formulation leads to a sys-
tematic determination of the initial conditions. In particular,
we find that due to the presence of tracking scalar quintes-
sence no additional dominant mode is introduced. This fact is
beautifully transparent in the matrix language. Indeed, con-
tributions of higher order inx[kt towards a perturbation
vectorU can easily be determined by solving a simple matrix
equation once the constant part ofU has been determined.

In total, we find four dominant modes and choose them as
adiabatic, CDM isocurvature, baryon isocurvature and neu-
trino isocurvature. For the neutrino isocurvature mode, quin-
tessence automatically is forced to nonadiabaticity. Hence,
we could have as well labeled the neutrino isocurvature
mode as quintessence isocurvature. To demonstrate the influ-
ence on the cosmic microwave background anisotropy spec-
trum, we have calculated spectra for all modes. Clearly,
nonadiabatic contributions are severely constrained by the
data. A detailed study may provide ways to put additional
constraints on quintessence models or tell us more about the
initial perturbations after inflation.
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APPENDIX A: GAUGE-INVARIANT PERTURBATION
EQUATIONS

In this appendix we will explain the derivation of Eqs.
~2!–~12! in detail.

1. The general story

First, we briefly summarize the gauge-invariant approach
of @19,20,22#. Perturbing a homogenous Friedmann universe,
one classifies fluctuations according to their transformation
properties with respect to the rotation group. In flat space-
time, we may expand the perturbation variables in terms of
harmonic functions@35#. With Q,i5]Q/]xi one defines

Qi~k,x![2k21Q~k,x! ,i ~A1!

and

Qi j ~k,x![k22Q~k,x! ,i j 1
1
3 d i j Q~k,x!, ~A2!

where theQ(k,x) are eigenfunctions of the Laplace operator,
¹2Qk(x)52k2Qk(x) and in spatially flat universesQ
5exp(ik•x). As modes with differentk decouple in linear
theory, we will not display thek dependence ofQ in the
following. The scalar parts of vector and tensor fields can
then be written as

Bi5BQi ~A3!

and

Hi j 5HLQd i j 1HTQi j , ~A4!

respectively.
In this work, we are only interested in scalar fluctuations

because scalar quintessence will not influence vector or ten-
sor modes. The most general line element for a perturbed
Robertson-Walker metric may be written as

ds25a~t!2@2~112A!dt222Bidtdxi

1~d i j 12Hi j !dxidxj #, ~A5!

where in the scalar caseBi andHi j are given by Eqs.~A3!
and~A4!. The gauge transformation of a tensorT is given by
@19–22,30#

T̃~x!5T~x!2LeT̄, ~A6!

whereLe is the Lie derivative. The transformation vectore
can be decomposed as

t̃5t1T~t!Q~x!, ~A7!

x̃i5xi1L~t!Qi~x!, ~A8!

whereL andT are arbitrary functions oft. The transforma-
tion properties of the metric perturbations are given by
@19,30#

Ã5A2HT2Ṫ, ~A9!
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B̃5B1L̇1kT, ~A10!

H̃L5HL2HT2
k

3
L, ~A11!

H̃T5HT1kL, ~A12!

where a dot denotes the derivative with respect to conformal
time t and H[ȧ(t)/a(t). The functionsL and T can be
used to eliminate two of the metric perturbations. Popular
choices areA5B50 for the synchronous gauge andB
5HT50 for the longitudinal gauge.

From Eqs. ~A9!–~A12! one can construct the gauge-
invariant Bardeen potentials@19#

C5A2Hk21s2k21ṡ, ~A13!

F5HL1 1
3 HT2Hk21s, ~A14!

with s[k21ḢT2B. It is worthwhile to note that in longitu-
dinal gauge, for whichB5HT5s50, the perturbed metric
takes on the simple form

ds( long)
2 5a~t!2@2~112CQ!dt21~112FQ!d i j dxidxj #.

~A15!

With M P̄[(8pG)21/2 denoting the reduced Planck mass,
Einstein’s equation reads

T n
m 5M P̄

2 S Rn
m2

1

2
dn

mRD , ~A16!

where the energy momentum tensor of a perfect fluid is
given by

T n
m 5pd n

m 1~r1p!umun1p n
m . ~A17!

The covariant 4-velocity isui5a@v(t)2B#Qi . We define
the energy density contrastd by r5 r̄@11d(t)#Q, the spa-
tial trace bypd j

i 5 p̄(t)@11pL(t)Q#d j
i and the traceless part

by p j
i 5 p̄PQj

i . Therefore the components of the energy mo-
mentum tensor are

T 0
0 52 r̄~11dQ!, ~A18!

T 0
i 52 r̄~11w!vQi , ~A19!

T i
0 5 r̄~11w!~v2B!Qi , ~A20!

T j
i 5 p̄@~11pLQ!d j

i 1PQj
i #. ~A21!

Given the gauge-transformation properties ofd, v and pL
@19–22,30#, one can construct gauge-invariant quantities for
the energy density contrastD, the velocityV and the entropy
perturbationG. These are given by

D5d13~11w!S HL1
1

3
HTD , ~A22!

V5v2k21ḢT , ~A23!

G5pL2
cs

2

w
d. ~A24!

Here,cs
2[] p̄/]r̄ is the adiabatic sound speed. From the con-

servation of the zero component of the energy momentum
tensor¹mT̄ 0

m 50 we obtain

ṙ̄a

r̄a

523~11wa!H, ~A25!

wherew5 p̄/ r̄ is the equation of state of the particular spe-
cies. The perturbed Einstein equations in gauge-invariant
variables are@19–22,30#

a2r̄D52MP̄
2
k2F23a2r̄~11w!~Hk21V2F!,

~A26!

a2~ r̄1 p̄!V52MP̄
2
k~HC2Ḟ!, ~A27!

a2p̄,P52M P̄
2
k2~F1C!, ~A28!

In the above, it is understood that the quantitiesD,V andP

are the sum of the contributions of all speciesa. Using ẇ

5(cs
22w) ṙ̄/ r̄ and Eq.~A25! we get fromT 0;m

m 50 that

Ḋ13~cs
22w!HD1kV~11w!13HwG50, ~A29!

and fromT i ;m
m 50,

TABLE I. Symbols and their meanings~where N.A. means not
applicable!.

Symbol Meaning Equation

Vspecies Fraction of total energy density N.A.
Vspecies

0 Fraction of total energy density today N.A.
a Scale factor of the universe N.A.
t Conformal timedt5dt/a N.A.
k Wave number of mode N.A.
x kt N.A.
˙ Derivative with respect to conformal time N.A.

8 Derivative with respect toxd/dx N.A.
H ȧ/a N.A.

D Gauge-invariant density contrast (Dg of @20#! ~A22!

V Gauge-invariant velocity ~A23!

P Shear ~A21!

Ṽ Reduced velocityṼ5x21V N.A.

P̃ Reduced shearP̃5x22P N.A.
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V̇5H~3cs
221!V1k@C23cs

2F#1
cs

2k

11w
D

1
wk

11w FG2
2

3
PG . ~A30!

2. Gauge-invariant quintessence perturbations

The scalar quintessence field is decomposed into a back-
ground and fluctuation part according tow(t,x)5w̄(t)
1x(t,x). The fluctuation can be promoted to a gauge-
invariant quantity by defining the gauge-invariant quintes-

sence field fluctuationX[x2 ẇ̄k21s. The field dynamics is
governed by the Klein-Gordon equation. For the background,
it reads

ẅ̄522Hẇ̄2a2V8~w!, ~A31!

while the perturbation obeys the equation of motion~Table I!

Ẍ5 ẇ̄~Ċ23Ḟ!22a2V8~w!C2@a2V9~w!1k2#X22HẊ.

~A32!

From the energy momentum tensor for the quintessence
field

T n
m 5w ,mw ,n2d n

m S 1

2
w ,aw ,a1V~w! D , ~A33!

usingw5w̄1X and the longitudinal gauge metric, one gets

dT0
0(long)5@a22~ ẇ̄2F2Ẋẇ̄ !2V8~w!X#Q, ~A34!

dT0
i ( long)52a22kẇ̄XQi . ~A35!

Using the definition ofD, Eq. ~A22! in longitudinal gauge

and r̄q1 p̄q5a22ẇ̄2 one can read off from Eq.~A34! the
gauge-invariant expression

Dq5~11wq!@3F2C1Ẋẇ̄21#1XV8~w!r̄q
(21) .

~A36!

In the same manner, one gets from Eq.~A35! and the fact
that v ( long)5V the relation

Vq5kẇ̄21X. ~A37!

Taking the time derivative of Eqs.~A36! and ~A37! and us-
ing the equation of motion~A32!, one obtains the evolution
equations

Ḋq5~11wq!F2a2V8~w!

ẇ̄
S Dq

11wq
23F D

1S 6aȧV8~w!

kẇ̄
2kD VqG1

wq̇Dq

11wq
~A38!

and

V̇q5kF Dq

11wq
23F1CG12HVq . ~A39!

Equation ~A38! depends on the specific quintessence

model throughV8 and ẇ̄. We can however make progress in
the case of nearly constantwq : Many quintessence models
have solutions for whichw approaches an attractor solution
irrespectively of its initial value. For these tracking quintes-
sence models@8,9,18#, the equation of state of the quintes-
sence fieldwq is nearly constant during radiation domina-
tion. We will use this vanishing ofẇq in the following to

derive relations to simplify Eq.~A38!. Consideringa22ẇ̄2

5(11wq)rw it follows using the Friedmann equation
3a22M P̄

2H 25r that

ẇ̄5@3~11wq!Vq#1/2M P̄H, ~A40!

and hence

ẅ̄

ẇ̄
5

d

dt
ln ẇ̄5

1

2

V̇q

Vq
1

Ḣ
H , ~A41!

where we have neglected a term involvingẇq. We will in the
following assume that at early times, the universe expands as
if radiation dominated. In this case,H5t21 and inserting
the above Eq.~A41! into the equation of motion~A31!, one
finds

a2V8

ẇ̄
52

3~12wq!

2t
. ~A42!

Using this relation~A42!, the evolution equation forDq be-
comes

Ḋq53~wq21!
k

x FDq23~11wq!F1H 32
x2

3~wq21!J
3~11wq!ṼqG , ~A43!

whereas the one for the velocity remains almost unaltered
while we move to the reduced velocityṼq ,

V̇̃q5
k

x F Dq

11wq
23F1CG1t21Ṽq . ~A44!

Note thatGq does not usually vanish. Instead, we obtain

wqGq5~12cs(q)
2 !FDq23~11wq!F13

ȧ

a
~11wq!

Vq

k
G ,

~A45!

with the sound speed of quintessence given by
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cs(q)
2 5 ṗ̄q / ṙ̄q5wq2

1

3

a

ȧ

ẇq

11wq
. ~A46!

3. Matter and radiation

Settingw5cs
25G50 in Eqs.~A29! and~A30!, we obtain

the cold dark matter evolution equations

Ḋc52kxṼc , ~A47!

V̇̃c5
k

x
~2Ṽc1C!. ~A48!

The multipole expansion of the neutrino distribution function
@7,36# can be truncated beyond the quadrupole at early times.
In terms of density, velocity and shear, it is given by@36,30#

Ḋn52 4
3 kxṼn , ~A49!

V̇̃n5
k

x S 1

4
Dn2Ṽn2

1

6
x2P̃n1C2F D , ~A50!

Ṗ̃n5
k

x S 8

5
Ṽn22P̃nD . ~A51!

Deep in the radiation dominated era, for which the initial
conditions here are derived, Compton scattering tightly
couples photons and baryons@20,37#. The coupling leads to
Vb5Vg and the evolution equations become@20#

Ḋg52 4
3 kxṼg , ~A52!

V̇̃g5
k

x S 1

4
Dg2Ṽg1C2F D , ~A53!

Ḋb52kxṼg . ~A54!

As the photon quadrupole and all higher photon multipoles
are suppressed during tight coupling, it follows thatF is
given from Einstein’s equation by

F52C2VnP̃n , ~A55!

where we have used the Friedmann equation. Finally, the
Poisson equation~A26! in terms of the various species is

C52

(
a5c,b,g,n,q

Va@Da13~11wa!Ṽa#

(
a5c,b,g,n,q

3~11wa!Va1
2x2

3

2VnP̃n ,

~A56!

where the indexa runs over all species. Rewriting the evo-
lution Eqs.~A47!–~A54! in terms ofd/d ln x and replacing
F by means of Eq.~A55!, one arrives at Eqs.~2!–~11!.

APPENDIX B: EARLY TIME QUINTESSENCE FIELD
FLUCTUATIONS

While throughout this work, we describe quintessence
perturbations by the variables$Dq ,Vq%, one could instead
use the field fluctuation and its time derivative$X,Ẋ%. In this
section, we will give analytic expressions forX andẊ in the
case of tracking quintessence for super-horizon modes. We
will do so assuming thatC and F are at least almost con-
stant. As this is not the case for CDM isocurvature and
baryon isocurvature, the following steps do not apply in
these modes. Furthermore, we will assume that the universe
expands as if radiation dominated during the time of interest.
In this case,H5t21, Vq}t123wq and hence by means of

Eq. ~A40! ẇ̄}t2(1/2)(113wq). Using this, we infer from Eq.
~A42! that V8}t2(1/2)(713wq). In addition, a straightforward
calculation using Eqs.~A41! and ~A42! yields

a2t2V95a2t2
dV8

dt

dt

dw
5

3

4
~12wq!~713wq!. ~B1!

The equation of motion forX ~A32! contains a termẇ̄(Ċ
23Ḟ), which by assumption we may drop. In addition, we
see from Eq.~B1!, that for super-horizon modesa2V9@k2

~except forwq very close to 1), and hence the equation of
motion reduces to

Ẍ522a2V8C2a2V9X22
ȧ

a
Ẋ. ~B2!

Using the power law behavior int of V8,V9 anda, as well as
Eqs.~A42!, ~B1!, one finds the particular solution

X~t!5
t

2
Cẇ̄, ~B3!

as well as two complementary solutions that may be added to
obtain the general solution

X~t!5
t

2
Cẇ̄1c1t2(1/2)(12A124a2t2V9)

1c2t2(1/2)(11A124a2t2V9). ~B4!

The mode proportional toc2 is at least as rapidly decaying as
the one proportional toc1. Using the explicit form of
4a2t2V9, Eq. ~B1!, we find thatA124a2t2V9 is imaginary

TABLE II. Tracking quintessence in the radiation era: Scaling
handbook.

Quantity Scaling behavior

ẇ̄ }t2(113wq)/2

V8 }t2(713wq)/2

V9 }t24

Dq
adiab const

Xadiab }t (123wq)/2
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if wqP@2 2
3 (11A6),2 2

3 (12A6)#, which holds for all sca-
lar quintessence models of current interest. Hence, the
complementary modes decay}1/At in an oscillating manner
~Table II!.

Coming back to the dominating particular solution~B3!,
Fig. 1 shows that the accuracy of this analytic result is in-
deed high at early times, when compared to numerical simu-
lations.

Inserting the solution~B3! and its time derivative into Eq.
~A36!, we find the simple expression

Dq53~11wq!S F2
1

2
C D , ~B5!

which is just a restatement of Eqs.~23! and~24!. Hence, the
energy density contrast in tracking quintessence models re-
mains constant on super-horizon scales, provided the gravi-
tational potentials are constant to good approximation.

APPENDIX C: EXTENDED MATRIX FORMULATION

For simplicity, we have limited the discussion in Sec. II B
to cases where eitherwq51/3 or quintessence contributions
to A(x) are neglected. Here, we will discuss cases for which
wq,1/3, while the background expands radiation domi-
nated. In this case,Vq}t (123wq) and we can split the matrix
in three parts according to their scaling withx:

A~x!5A01xA11x(123wq)Aq . ~C1!

Again, Eq.~1! will lead to a solution vector of the form

U~x!5U01xU11x(123wq)Uq . ~C2!

Substituting this into Eq.~1! and keeping only leading orders
in x, we get

A0U050, ~C3!

A1U01A0U15U1 , ~C4!

AqU01A0Uq5~123wq!Uq . ~C5!

While the conclusion regardingU0 andU1 are still the same
as in Sec. II B, we see that quintessence may introduce a
correction

Uq52@A02~123wq!1#21AqU0 . ~C6!

This contributionx(123wq)Uq could in principle dominate
over xU1 for wq.0,Vq.Vc . However, the contribution is
only of interest for the CDM isocurvature and baryon isocur-
vature modes, as it is otherwise negligible compared to the
constant order. Yet for CDM isocurvature and baryon isocur-
vature,Aq U050. Therefore, the discussion below applies,
leading toUq50 for CDM isocurvature and baryon isocur-
vature modes. One order higher inx, there may be a contri-
bution. Yet this is in any case a higher order contribution,
which we may neglect.

Finally, we briefly discuss the case of vanishingU0. This
only concerns possible subdominant modes. Equation~C4!
then yieldsA0U15U1, i.e., U1 is an eigenvector ofA0 with
eigenvaluel51. As A0 does not have such an eigenvector,
we are led to conclude that Eq.~1! does not have a regular
solution involving U1, if U050. Turning to Eq.~C5!, we
similarly conclude thatUq needs to be a eigenvector ofA0
with l5(123wq) for vanishing U0. For wq,1/3 this is
once again excluded and forwq51/3, we just regain the
results of Sec. II B.

@1# D.N. Spergelet al., astro-ph/0302209.
@2# V.F. Mukhanov and G.V. Chibisov, Pis’ma Zh. E´ksp. Teor. Fiz.

33, 549 ~1981! @JETP Lett.33, 532 ~1981!#.
@3# A. R. Liddle and D. H. Lyth~unpublished!.
@4# J.M. Bardeen, P.J. Steinhardt, and M.S. Turner, Phys. Rev. D

28, 679 ~1983!.
@5# D.H. Lyth, C. Ungarelli and D. Wands, Phys. Rev. D67,

023503~2003!.
@6# N. Bartolo and A.R. Liddle, Phys. Rev. D65, 121301~R!

~2002!.
@7# C.P. Ma and E. Bertschinger, Astrophys. J.455, 7 ~1995!.
@8# C. Wetterich, Nucl. Phys.B302, 668 ~1988!.
@9# B. Ratra and P.J. Peebles, Phys. Rev. D37, 3406~1988!.

@10# R.R. Caldwell, R. Dave, and P.J. Steinhardt, Phys. Rev. Lett.
80, 1582~1998!.

@11# P.T. Viana and A.R. Liddle, Phys. Rev. D57, 674 ~1998!.
@12# R. Dave, R.R. Caldwell, and P.J. Steinhardt, Phys. Rev. D66,

023516~2002!.
@13# M. Malquarti and A.R. Liddle, Phys. Rev. D66, 123506

~2002!.
@14# L.R. Abramo and F. Finelli, Phys. Rev. D64, 083513~2001!.

@15# M. Kawasaki, T. Moroi, and T. Takahashi, Phys. Lett. B533,
294 ~2002!.

@16# F. Perrotta and C. Baccigalupi, Phys. Rev. D59, 123508
~1999!.

@17# R.R. Caldwell, M. Doran, C.M. Mueller, G. Schaefer, and C.
Wetterich, Astrophys. J. Lett.591, L75 ~2003!.

@18# P.J. Steinhardt, L.M. Wang, and I. Zlatev, Phys. Rev. D59,
123504~1999!.

@19# J.M. Bardeen, Phys. Rev. D22, 1882~1980!.
@20# H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl.78, 1

~1984!.
@21# V.F. Mukhanov, H.A. Feldman, and R.H. Brandenberger, Phys.

Rep.215, 203 ~1992!.
@22# R. Durrer, J. Phys. Stud.5, 177 ~2001!.
@23# A.K. Rebhan and D.J. Schwarz, Phys. Rev. D50, 2541~1994!.
@24# J. M. Bardeen,Particle Physics and Cosmology~Gordon and

Breach, New York, 1989!.
@25# D. Wands, K.A. Malik, D.H. Lyth, and A.R. Liddle, Phys. Rev.

D 62, 043527~2000!.
@26# J. Martin and D.J. Schwarz, Phys. Rev. D57, 3302~1998!.

GAUGE-INVARIANT INITIAL CONDITIONS AND . . . PHYSICAL REVIEW D 68, 063505 ~2003!

063505-11



@27# K. Enqvist, H. Kurki-Suonio, and J. Valiviita, Phys. Rev. D62,
103003~2000!.

@28# R. Trotta, A. Riazuelo, and R. Durrer, Phys. Rev. D67, 063520
~2003!.

@29# C. Gordon and A. Lewis, Phys. Rev. D67, 123513~2003!.
@30# M. Doran, astro-ph/0302138.
@31# U. Seljak and M. Zaldarriaga, Astrophys. J.469, 437 ~1996!.
@32# M. Bucher, K. Moodley, and N. Turok, Phys. Rev. Lett.87,

191301~2001!.
@33# D. Langlois and A. Riazuelo, Phys. Rev. D62, 043504

~2000!.
@34# L. Amendola, C. Gordon, D. Wands, and M. Sasaki, Phys. Rev.

Lett. 88, 211302~2002!.
@35# J.W. York, J. Math. Phys.14, 456 ~1973!.
@36# R. Durrer, Fundam. Cosmic Phys.15, 209 ~1994!.
@37# P.J. Peebles and J.T. Yu, Astrophys. J.162, 815 ~1970!.

DORAN et al. PHYSICAL REVIEW D 68, 063505 ~2003!

063505-12


	Dartmouth College
	Dartmouth Digital Commons
	9-18-2003

	Gauge-Invariant Initial Conditions and Early Time Perturbations in Quintessence Universes
	Michael Doran
	Christian M. Müller
	Gregor Schäfer
	Christof Wetterich
	Recommended Citation


	tmp.1525199829.pdf.SQr04

