87 research outputs found

    Experimental and analytical performance investigation of air to air two phase closed thermosyphon based heat exchangers

    Get PDF
    In recent years, the use of wickless heat pipes (thermosyphons) in heat exchangers has been on the rise, particularly in gas to gas heat recovery applications due to their reliability and the level of contingency they offer compared to conventional heat exchangers. Recent technological advances in the manufacturing processes and production of gravity assisted heat pipes (thermosyphons) have resulted in significant improvements in both quality and cost of industrial heat pipe heat exchangers. This in turn has broadened the potential for their usage in industrial waste heat recovery applications. In this paper, a tool to predict the performance of an air to air thermosyphon based heat exchanger using the ε-NTU method is explored. This tool allows the predetermination of variables such as the overall heat transfer coefficient, effectiveness, pressure drop and heat exchanger duty according to the flow characteristics and the thermosyphons configuration within the heat exchanger. The new tool's predictions were validated experimentally and a good correlation between the theoretical predictions and the experimental data, was observed. © 2014 Elsevier Ltd. All rights reserved

    Neutron/proton ratio of nucleon emissions as a probe of neutron skin

    Full text link
    The dependence between neutron-to-proton yield ratio (RnpR_{np}) and neutron skin thickness (δnp\delta_{np}) in neutron-rich projectile induced reactions is investigated within the framework of the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model. The density distribution of the Droplet model is embedded in the initialization of the neutron and proton densities in the present IQMD model. By adjusting the diffuseness parameter of neutron density in the Droplet model for the projectile, the relationship between the neutron skin thickness and the corresponding RnpR_{np} in the collisions is obtained. The results show strong linear correlation between RnpR_{np} and δnp\delta_{np} for neutron-rich Ca and Ni isotopes. It is suggested that RnpR_{np} may be used as an experimental observable to extract δnp\delta_{np} for neutron-rich nuclei, which is very significant to the study of the nuclear structure of exotic nuclei and the equation of state (EOS) of asymmetric nuclear matter.Comment: 7 pages, 5 figures; accepted by Phys. Lett.

    Azimuthal asymmetry of direct photons in intermediate energy heavy-ion collisions

    Get PDF
    Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have presented a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter FF and elliptic asymmetry coefficient v2v_2, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive FF and negative v2v_2 of direct photons are illustrated and they seem to be anti-correlated to the corresponding free proton's flow.Comment: 7 pages, 4 figures; accepted by Physics Letters

    Coincidence probability as a measure of the average phase-space density at freeze-out

    Get PDF
    It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.Comment: LateX, 9 pages, no figure

    Scaling of Anisotropic Flow and Momentum-Space Densities for Light Particles in Intermediate Energy Heavy Ion Collisions

    Get PDF
    Anisotropic flows (v2v_2 and v4v_4) of light nuclear clusters are studied by Isospin-Dependent Quantum Molecular Dynamics model for the system of 86^{86}Kr + 124^{124}Sn at intermediate energy and large impact parameters. Number-of-nucleon scaling of the elliptic flow (v2v_2) are demonstrated for the light fragments up to AA = 4, and the ratio of v4/v22v_4/v_2^2 shows a constant value of 1/2. In addition, the momentum-space densities of different clusters are also surveyed as functions of transverse momentum, in-plane transverse momentum and azimuth angle relative to the reaction plane. The results can be essentially described by momentum-space power law. All the above phenomena indicate that there exists a number-of-nucleon scaling for both anisotropic flow and momentum-space densities for light clusters, which can be understood by the coalescence mechanism in nucleonic degree of freedom for the cluster formation.Comment: 8 pages, 3 figures; to be published in Physics Letters

    Scaling of anisotropy flows in intermediate energy heavy ion collisions

    Get PDF
    Anisotropic flows (v1v_1, v2v_2 and v4v_4) of light nuclear clusters are studied by a nucleonic transport model in intermediate energy heavy ion collisions. The number-of-nucleon scalings of the directed flow (v1v_1) and elliptic flow (v2v_2) are demonstrated for light nuclear clusters. Moreover, the ratios of v4/v22v_4/v_2^2 of nuclear clusters show a constant value of 1/2 regardless of the transverse momentum. The above phenomena can be understood by the coalescence mechanism in nucleonic level and are worthy to be explored in experiments.Comment: Invited talk at "IX International Conference on Nucleus-Nucleus Collisions", Rio de Janeiro, Aug 28- Sept 1, 2006; to appear on the proceeding issue in Nuclear Physics

    Quark deconfinement in neutron star cores and the ground state of neutral matter

    Full text link
    Whether or not deconfined quark phase exists in neutron star cores and represents the ground state of neutral matter at moderate densities are open questions. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. After constructing possible hybrid equations of state (EOSes) with unpaired or color superconducting quark phase, we systematically discuss the observational constraints of neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807. Therefore, we conclude that the ground state of neutral matter at moderate densities is in deconfined quark phase likely.Comment: 13 pages, 4 figure

    Strange quark collectivity of ϕ\phi meson at RHIC

    Full text link
    Based on A Multi-Phase Transport model, the elliptic flow v2v_{2} of ϕ\phi mesons which is reconstructed from K+KK^{+}K^{-} at the Relativistic Heavy Ion Collider (RHIC) energy has been studied. The results show that reconstructed v2v_{2} of ϕ\phi meson can keep the earlier information before ϕ\phi decays and it seems to obey the number of constituent quark scaling as other mesons and baryons. This result indicates that the ϕ\phi v2v_2 mostly reflects the parton level collectivity developed during the early stage of the collisions and the strange and light up/down quarks have similar collectivity properties before the hadronization.Comment: Proceeding for the "Workshop on Quark-Gluon-Plasma Thermalization", TU Wien, Vienna, Austria, Aug. 200

    On the Lorentz structure of the symmetry energy

    Full text link
    We investigate in detail the density dependence of the symmetry energy in a relativistic description by decomposing the iso-vector mean field into contributions with different Lorentz covariant properties. We find important effects of the iso-vector, scalar channel (i.e. δ\delta-meson like) on the high density behavior of the symmetry energy. Applications to static properties of finite nuclei and to dynamic situations of heavy ion collisions are explored and related to each other. The nuclear structure studies show only moderate effects originating from the virtual δ\delta meson. At variance, in heavy ion collisions one finds important contributions on the reaction dynamics arising from the different Lorentz structure of the high density symmetry energy when a scalar iso-vector δ\delta field is introduced. Particularly interesting is the related neutron/proton effective mass splitting for nucleon transport effects and for resonance and particle production around the threshold. We show that the δ\delta-like channel turns out to be essential for the production of pions, when comparing with experimental data, in particular for high momentum selections.Comment: 30 pages, 12 figures (.eps

    A phenomenological equation of state for isospin asymmetric nuclear matter

    Full text link
    A phenomenological momentum-independent (MID) model is constructed to describe the equation of state (EOS) for isospin asymmetric nuclear matter, especially the density dependence of the nuclear symmetry energy Esym(ρ)E_{\text{\textrm{sym}}}(\rho). This model can reasonably describe the general properties of the EOS for symmetric nuclear matter and the symmetry energy predicted by both the sophisticated isospin and momentum dependent MDI model and the Skyrme-Hartree-Fock approach. We find that there exists a nicely linear correlation between KsymK_{\mathrm{sym}} and LL as well as between J0/K0J_{0}/K_{0} and K0K_{0}, where LL and KsymK_{\mathrm{sym}} represent, respectively, the slope and curvature parameters of the symmetry energy at the normal nuclear density ρ0\rho_{0} while K0K_{0} and J0J_{0} are, respectively, the incompressibility and the third-order derivative parameter of symmetric nuclear matter at ρ0\rho_{0}. These correlations together with the empirical constraints on K0K_{0}, LL and Esym(ρ0)E_{\text{\textrm{sym}}}(\rho_{0}) lead to an estimation of -477 MeV Ksat,2241\leq K_{\mathrm{sat,2}}\leq -241 MeV for the second-order isospin asymmetry expansion coefficient for the incompressibility of asymmetric nuclear matter at the saturation point.Comment: 9 pages, 4 figures, contribution to Special Topic on Large-Scale Scientific Facilities (LSSF) in Science in China Series G: Physics, Mechanics & Astronom
    corecore