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Abstract

It is pointed out that the average semi-inclusive particle phase-space density at freeze-out can be determined from the coincidence probability
of the events observed in multiparticle production. The method of measurement is described and its accuracy examined.
© 2005 Elsevier B.V. Open access under CC BY license.
1. Recently, several methods were proposed which allow
to estimate the average of the single-particle inclusive phase-
space density produced in ultrarelativistic heavy ion collisions
[1–5]. This quantity is useful in discussions of the equilibrated
systems and therefore such measurements open possibilities to
verify the expected presence of the thermal phase-space distri-
bution at freeze-out [6] and/or search for more exotic phenom-
ena [7].

In the present Letter we propose an extension of these stud-
ies by including, in addition, the exclusive and semi-inclusive
M-particle phase-space densities. We show that their averages
can be estimated from measured coincidence probabilities of
the multiparticle events observed in high-energy collisions. The
information one may gain from this approach is complementary
to that obtained from single-particle inclusive measurements.
In particular, it gives an insight into the correlation structure
of the final state of the collision (including both dynamic and
Bose–Einstein correlations), a feature which is ignored in the
single-particle inclusive measurements described in [1–5]. Fur-
thermore, one can show [8] that the average semi-inclusive
phase-space densities are closely related to the second Renyi
entropy [9] and thus their measurement allows to estimate a
lower limit of the true (Shannon) entropy of the system (with-
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out assuming the thermodynamic equilibrium). Needless to say,
a comparison of the measured average semi-inclusive phase-
space densities with expectations for the thermalized systems
would be very interesting indeed.

As emphasized in [1,3], the phase-space distribution of par-
ticles produced in high-energy collisions is not a precisely de-
fined quantity. Apart from the standard problems with the un-
certainty principle, one has to take into account that particles
may be produced at different times [1]. Following Bertsch [1],
we shall ignore this problem and assume that all particles are
created at the same time. That is to say, we are considering a
time-average of the density [1,3].

To define the average semi-inclusive phase-space density,
consider a collection of events in which exactly M particles
were observed in a given region of the momentum space. We
shall call them M-particle events (independently of how many
particles were actually produced).1 These events can be de-
scribed by the normalized M particle phase-space distribution
WM(X,K), with X = X1, . . . ,ZM , K = K

(1)
x , . . . ,K

(M)
z . The

corresponding particle phase-space density is DM(X,K) =

1 This is terminology often used in experimental description of multiparticle
processes. The proper technical term is the exclusive distribution if all particles
are observed, and semi-inclusive distribution if besides a given number of ob-
served particles there is an unspecified number of other particles. This should
not be confused with inclusive M-particle distributions.
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MWM(X,K) and thus

(1)
〈|DM |〉 = M

∫
dX dK

∣∣WM(X,K)
∣∣2 ≡ M(2π)−3MCM

gives the average phase-space density of the M particle system.
It should be emphasized that, as is clear from this discussion,

the phase-space density DM , describing the semi-exclusive dis-
tribution, refers only to particles actually measured in a given
experiment and in a given momentum region. It gives no direct
information about the particles which are not registered in the
detector. To obtain information on the phase-space density of
all produced particles additional assumptions (e.g., thermody-
namic equilibrium) are necessary.

Note that the average semi-inclusive phase-space density
averaged over all particle multiplicities is simply obtained
from (1), using

(2)
〈〈D〉〉 = ∑

M

P(M)〈DM 〉

where P(M) is the multiplicity distribution. Therefore, from
now on, to simplify the discussion, we shall only consider the
case of a fixed multiplicity.

Our method is based on the observation that, for a rather
wide class of models of particle production, the quantity C,
defined in (1),2 can be approximated by the measured coinci-
dence probability Cexp of the events with M particles, defined
as [10,11]

(3)Cexp = N2

N(N − 1)/2
,

where N2 is the number of the observed pairs of identical events
and N is the total number of events. N(N − 1)/2 is the total
number of pairs of events.3

It is clear that, since the observed events are described by the
particle momenta which are continuous variables, Eq. (3) is not
directly applicable: a discretization is necessary. Then one can
define the identical events as those which have the same popu-
lation of the predefined bins and thus counting of coincidences
becomes straightforward.4 The counting of identical events ob-
viously depends on the binning, so the procedure is ambiguous
[10,11,13,15]. In order to obtain a viable estimate of the aver-
age particle density, we thus have to select the binning in such
a way that the result of (3) is as close as possible to the exact
value of C which, as seen from (1), gives directly the particle
phase-space density.

In the present Letter we argue that for a fairly large class of
physically sensible models, one can find an adequate binning
procedure and thus to determine rather precisely 〈D〉 by mea-
suring Cexp, i.e., by counting the number of pairs of identical
events. The method turns out to be particularly suitable for large
systems and thus may be useful in heavy ion collisions.

2 To simplify the formulae we shall from now on omit the index M in all
quantities. Since we are discussing solely M-particle events, this should not
lead to any confusion.

3 Formula (3) was first suggested, in a different context, by Ma [12].
4 A detailed description of this procedure was given in [13] and applied

in [14].
In the next section the discretization procedure is described
in some detail and the corresponding formulae for Cexp are
written down. The phase-space density 〈D〉 and its relation to
Cexp are discussed in Section 3. Our conclusions and outlook
are given in the last section.

2. In this section we discuss how the discretization pro-
cedure affects the definition (3) of the coincidence probabil-
ity. To this end we first express the Cexp given by (3) in
terms of the momentum distribution of M particles w(K) =
w(K(1), . . . ,K(M)).

Consider a set of discretized events constructed by dividing
the particle momentum space into J rectangular bins of volume

(4)ωj = (ΔxΔyΔz)j , j = 1, . . . , J.

Then the probability to find a particle in bin ωj1 , another one in
bin ωj2 , etc., is

(5)P(j1, j2, . . . , jM) =
M∏

m=1

ωjm

〈
w

(
K

(1)
j1

, . . . ,K
(M)
jM

)〉

where
〈
w

(
K

(1)
j1

, . . . ,K
(M)
jM

)〉

(6)

=
M∏

m=1

(ωjm)−1
∫

ωj1

dK(1) · · ·
∫

ωjM

dK(M) w
(
K(1), . . . ,K(M)

)
.

Note that the bins ωj1, . . . ,ωjM
do not have to be different.

Thus the coincidence probability as measured by the for-
mula (3) is

C
exp
M =

∑
j1

· · ·
∑
jM

[
P(j1, j2, . . . , jM)

]2

(7)=
∑
j1

· · ·
∑
jM

M∏
m=1

[ωjm ]2[〈w(
K

(1)
j1

, . . . ,KM
jM

)〉]2
.

The first equality follows from the observation that sampling
a series of events is the Bernoulli process and thus probabil-
ity to find, after N trials, n1, . . . , nJ events in configurations
{1}, . . . , {J } is

(8)B(n1, . . . , nJ ) = N !
n1! · · ·nJ ! (P1)

n1 · · · (PJ )nJ .

From this formula it is not difficult to see that

〈N2〉 ≡
∑

n1,...,nJ

J∑
j=1

nj (nj − 1)

2
B(n1, . . . , nJ )

(9)= N(N − 1)

2

J∑
j=1

(Pj )
2.

The question now is: how to select the bins ωj to obtain a
result as close as possible to C giving the average value of the
particle phase-space density 〈D〉 (cf. (1)). This is discussed in
the next section.
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3. To analyze the relation between Cexp and C we consider
the M-particle phase-space distribution of the general form

(10)W(X,K) = 1

(LxLyLz)M
G[X/L]w(K),

with X/L ≡ (X1 − X̄1)/Lx, . . . , (ZM − Z̄M)/Lz, K = K1,

. . . ,KM . The function G satisfies the normalization conditions∫
d3MuG(u) = 1 →

∫
dXG(X/L) = (LxLyLz)

M,

∫
d3MuuiG(u) = 0 → 〈Xi,Yi,Zi〉 = X̄i, Ȳi , Z̄i ,

(11)
∫

d3Mu(ui)
2G(u) = 1 → 〈

(Xi − X̄i)
2, . . .

〉 = L2
x, . . . .

The first condition insures that w(K) is the observed (mul-
tidimensional) momentum distribution,5 the second defines the
central values of the particle distribution in configuration space
and the third defines Lx, Ly, Lz as giving root mean square
sizes of the distribution in configuration space. Both sizes and
central positions may depend on the particle momenta.6 The
form of the function G describes the shape of the multiparticle
distribution in configuration space.

Ansatz (10) for the time-averaged phase space density is sat-
isfied in a large variety of models [16].

Using (10) we obtain from (1)

C = (2π)3M

∫
d3MK

[
w(K1, . . . ,KM)

]2

×
∫

dX1 · · ·dZM

(LxLyLz)2M

[
G(X/L)

]2

(12)= (2πg)3M

∫
d3MK

[
w(K1, . . . ,KM)

]2 1

(LxLyLz)M
,

with

(13)g3M =
∫

d3Mu
[
G(u)

]2
.

The constant g depends on the shape of particle distribu-
tion in configuration space. This dependence is, however, rather
mild. For example, we obtain g−1 = 2

√
π for Gaussians and

g−1 = 2
√

3 for a rectangular box.
In the discretized form, (12) can be written as

(14)C = (2πg)3M
∑

j1,...,jM

M∏
m=1

ωjm

(LxLyLz)jm

〈[wj1,...,jM
]2〉,

where〈[wj1,...,jM
]2〉

=
M∏

m=1

(ωjm)−1

(15)×
∫

ωj1

dK(1) · · ·
∫

ωjM

dK(M)
{
w

(
K(1), . . . ,K(M)

)}2
,

and (LxLyLz)jm is a suitable average of (LxLyLz) over bin jm.

5 By definition, w(K) = ∫
dX W(X,K).

6 They may be also different for different kinds of particles.
Comparing (14) with (7) one sees that to have C
exp
M as close

as possible to C, the best volume of the bins is

(16)ωjm = (ΔxΔyΔz)jm = (2πg)3

(LxLyLz)jm

.

One sees from this formula that ω depends crucially on the
volume of the system in configuration space. One sees, further-
more, that with this choice of ω the coincidence probability
Cexp, determined by counting the number of pairs of identical
events (cf. (3)), is related to C, giving directly the average par-
ticle phase-space density 〈D〉 (cf. (1) and (14)), by the formula

(17)C = Cexp

∑
j1,...,jM

〈[wj1,...,jM
]2〉∑

j1,...,jM
[〈wj1,...,jM

〉]2
.

It is thus clear that the accuracy of determination of C in-
creases with increasing volume of the system. Indeed, for a
volume large enough, the bins defined by (16) are small and
the ratio on the R.H.S. of (17) approaches unity. For smaller
volumes the method is less accurate but one may try to estimate
the correcting ratio from the (measured) single particle distrib-
ution.

4. Several comments are in order.

(i) One sees from (16) that the optimal size of the bin does not
depend on the average position of the particles at freeze-
out. This implies that the momentum–position correlations
induced by the K-dependence of X̄ do not influence sig-
nificantly the measurement of the coincidence probability.

(ii) It is also seen from (16) that only the volume of the bin
ωjm = (ΔxΔyΔz)jm , but not its shape, matters in the de-
termination of the optimal discretization. One can use this
freedom to improve the accuracy of the measurement by
taking bins large in the directions with weak momentum
dependence and small in the direction where the momen-
tum dependence is significant.

(iii) One may improve the accuracy of the measurement by es-
timating the ratio

∑
j1,...,jM

〈[wj1,...,jM
]2〉∑

j1,...,jM
[〈wj1,...,jM

〉]2
.

This may be possible if the momentum distribution of par-
ticles is measured with good accuracy.

(iv) Our analysis can be applied to any part of the momentum
space. This allows to measure the local particle density in
momentum space, averaged over all configuration space.
In case of strong momentum–position correlations, the
selection of a given momentum region can induce, how-
ever, a selection of a corresponding region in configuration
space.

(v) The accuracy of the measurement depends crucially on
the correct estimate of the size of the system. Information
from HBT measurements should allow to determine the
parameters Lx, Ly, Lz and—at least in principle—also
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the shape7 of the function G(u) (some procedures are de-
scribed in [2,4]). Therefore, good HBT data are essential
for a successful application of the method.

(vi) The presented analysis of the discretization procedure
can be generalized to higher order coincidence probabil-
ities [17]. This opens the way to a determination of higher
Renyi entropies [8] and then, by extrapolation, to obtain
information on the Shannon entropy of the system [11].

In conclusion, we propose to estimate the phase-space den-
sity of particles produced in high-energy collisions by mea-
suring the coincidence probability of the observed events. The
accuracy of the determination of the coincidence probability by
counting the number of the identical events [10,11] was ana-
lyzed for a large class of physically sensible models. It was
shown that the accuracy improves with increasing volume of
the system and, therefore, the method is particularly suitable
for heavy ion collisions. A formula giving the optimal dis-
cretization method in terms of the size of the system in the
configuration space (Eq. (16)) was derived.
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