1,452 research outputs found

    Jefferson Digital Commons quarterly report: October-December 2019

    Get PDF
    This quarterly report includes: Articles Dean\u27s Research Development Lunch Conference Dissertations Educational Materials From the Archives Grand Rounds and Lectures Journals and Newsletters Population Health Presentation Materials Posters Reports Symposiums What People are Saying About the Jefferson Digital Common

    Jefferson Digital Commons quarterly report: January-March 2020

    Get PDF
    This quarterly report includes: New Look for the Jefferson Digital Commons Articles COVID-19 Working Papers Educational Materials From the Archives Grand Rounds and Lectures JeffMD Scholarly Inquiry Abstracts Journals and Newsletters Master of Public Health Capstones Oral Histories Posters and Conference Presentations What People are Saying About the Jefferson the Digital Common

    Infrared cut-off proposal for the Holographic density

    Get PDF
    We propose an infrared cut-off for the holographic the dark-energy, which besides the square of the Hubble scale also contains the time derivative of the Hubble scale. This avoids the problem of causality which appears using the event horizon area as the cut-off, and solves the coincidence problem.Comment: 9 pages, 2 figures, to appear in Phys. Lett.

    The dilated cardiomyopathy-causing mutation ACTC E361G in cardiac muscle myofibrils specifically abolishes modulation of Ca2+ regulation by phosphorylation of Troponin I

    Get PDF
    Phosphorylation of troponin I by protein kinase A (PKA) reduces Ca2þ sensitivity and increases the rate of Ca2þ release from troponin C and the rate of relaxation in cardiac muscle. In vitro experiments indicate that mutations that cause dilated cardiomyopathy (DCM) uncouple this modulation, but this has not been demonstrated in an intact contractile system. Using a Ca2þ-jump protocol, we measured the effect of the DCM-causing mutation ACTC E361G on the equilibrium and kinetic parameters of Ca2þ regulation of contractility in single transgenic mouse heart myofibrils. We used propranolol treatment of mice to reduce the level of troponin I and myosin binding protein C (MyBP-C) phosphorylation in their hearts before isolating the myo- fibrils. In nontransgenic mouse myofibrils, the Ca2þ sensitivity of force was increased, the fast relaxation phase rate constant, kREL, was reduced, and the length of the slow linear phase, tLIN, was increased when the troponin I phosphorylation level was reduced from 1.02 to 0.3 molPi/TnI (EC50 P/unp ¼ 1.8 5 0.2, p < 0.001). Native myofibrils from ACTC E361G transgenic mice had a 2.4-fold higher Ca2þ sensitivity than nontransgenic mouse myofibrils. Strikingly, the Ca2þ sensitivity and relaxation parameters of ACTC E361G myofibrils did not depend on the troponin I phosphorylation level (EC50 P/unp ¼ 0.88 5 0.17, p ¼ 0.39). Nevertheless, modulation of the Ca2þ sensitivity of ACTC E361G myofibrils by sarcomere length or EMD57033 was indistinguishable from that of nontransgenic myofibrils. Overall, EC50 measured in different conditions varied over a 7-fold range. The time course of relaxation, as defined by tLIN and kREL, was correlated with EC50 but varied by just 2.7- and 3.3-fold, respectively. Our results confirm that troponin I phosphorylation specifically alters the Ca2þ sensitivity of isometric tension and the time course of relaxation in cardiac muscle myofibrils. Moreover, the DCM-causing mutation ACTC E361G blunts this phosphorylation-dependent response without affecting other parameters of contraction, including length-dependent activation and the response to EMD57033

    Entanglement in holographic dark energy models

    Get PDF
    We study a process of equilibration of holographic dark energy (HDE) with the cosmic horizon around the dark-energy dominated epoch. This process is characterized by a huge amount of information conveyed across the horizon, filling thereby a large gap in entropy between the system on the brink of experiencing a sudden collapse to a black hole and the black hole itself. At the same time, even in the absence of interaction between dark matter and dark energy, such a process marks a strong jump in the entanglement entropy, measuring the quantum-mechanical correlations between the horizon and its interior. Although the effective quantum field theory (QFT) with a peculiar relationship between the UV and IR cutoffs, a framework underlying all HDE models, may formally account for such a huge shift in the number of distinct quantum states, we show that the scope of such a framework becomes tremendously restricted, devoiding it virtually any application in other cosmological epochs or particle-physics phenomena. The problem of negative entropies for the non-phantom stuff is also discussed.Comment: 10 pages, version to appear in PL

    Imprints of dynamical dark energy on weak-lensing measurements

    Full text link
    We show that simple models of scalar-field dark energy leave a generic enhancement in the weak-lensing power spectrum when compared to the LCDM prediction. In particular, we calculate the linear-scale enhancement in the convergence (or cosmic-shear) power spectrum for two best-fit models of scalar-field dark energy, namely, the Ratra-Peebles and SUGRA-type quintessence. Our calculations are based on linear perturbation theory, using gauge-invariant variables with carefully defined adiabatic initial conditions. We find that geometric effects enhance the lensing power spectrum on a broad range of scales, whilst the clustering of dark energy gives rise to additional power on large scales. The dark-energy power spectrum for these models are also explicitly obtained. On degree scales, the total enhancement may be as large as 30-40% for sources at redshift ~1. We argue that there are realistic prospects for detecting such an enhancement using the next generation of large telescopes.Comment: 10 pages, 8 figures, replacement matches version published in MNRA

    Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy

    Get PDF
    Cosmological consequences of a string-motivated dark energy scenario featuring a scalar field coupled to the Gauss-Bonnet invariant are investigated. We study the evolution of the universe in such a model, identifying its key properties. The evolution of the homogeneous background and cosmological perturbations, both at large and small scales, are calculated. The impact of the coupling on galaxy distributions and the cosmic microwave background is examined. We find the coupling provides a mechanism to viably onset the late acceleration, to alleviate the coincidence problem, and furthermore to effectively cross the phantom divide at the present while avoiding a Big Rip in the future. We show the model could explain the present cosmological observations, and discuss how various astrophysical and cosmological data, from the Solar system, supernovae Ia, cosmic microwave background radiation and large scale structure constrain it.Comment: 6 pages, 3 figures. References added. Accepted for publication in Phys. Lett.

    Cosmic Strings, Zero Modes and SUSY breaking in Nonabelian N=1 Gauge Theories

    Get PDF
    We investigate the microphysics of cosmic strings in Nonabelian gauge theories with N=1 supersymmetry. We give the vortex solutions in a specific example and demonstrate that fermionic superconductivity arises because of the couplings and interactions dictated by supersymmetry. We then use supersymmetry transformations to obtain the relevant fermionic zero modes and investigate the role of soft supersymmetry breaking on the existence and properties of the superconducting strings.Comment: 12 pages, RevTex, submitted to Phys. Rev.

    Mixed Models with n>1 and Large Scale Structure constraints

    Get PDF
    Recent data on CBR anisotropies show a Doppler peak higher than expected in CDM cosmological models, if the spectral index n=1n=1. However, CDM and LCDM models with n>1 can hardly be consistent with LSS data. Mixed models, instead, whose transfer function is naturally steeper because of free--streaming in the hot component, may become consistent with data if n>1, when Omega_h is large. This is confirmed by our detailed analysis, extended both to models with a hot component whose momentum space distribution had a thermal origin (like massive neutrinos), and to models with a non--cold component arising from heavier particle decay. In this work we systematically search models which fulfill all constraints which can be implemented at the linear level. We find that a stringent linear constraint arises from fitting the extra-power parameter Gamma. Other significant constraints arise comparing the expected abundances of galaxy clusters and high-z systems with observational data. Keeping to models with Gamma \geq 0.13, a suitable part of the space parameter still allows up to \sim 30% of hot component (it is worth outlining that our stringent criteria allow only models with 0.10 \mincir Omega_h \mincir 0.16, if n \leq 1). We also outline that models with such large non--cold component would ease the solution of the so--called baryon catastrophe in galaxy clusters.Comment: 28 pages + 9 figures, uses elsart.sty, to be published in New Astronom

    Association between environmental tobacco smoke exposure and dementia syndromes

    Get PDF
    © 2020 The Authors. Published by BMJ. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: http://dx.doi.org/10.1136/oemed-2012-100785Objectives: Environmental tobacco smoke (ETS) has a range of adverse health effects, but its association with dementia remains unclear and with dementia syndromes unknown. We examined the dose-response relationship between ETS exposure and dementia syndromes. Methods: Using a standard method of GMS, we interviewed 5921 people aged ≥60 years in five provinces in China in 2007-2009 and characterised their ETS exposure. Five levels of dementia syndrome were diagnosed using the Automated Geriatric Examination for Computer Assisted Taxonomy instrument. The relative risk (RR) of moderate (levels 1-2) and severe (levels 3-5) dementia syndromes among participants exposed to ETS was calculated in multivariate adjusted regression models. Results: 626 participants (10.6%) had severe dementia syndromes and 869 (14.7%) moderate syndromes. Participants exposed to ETS had a significantly increased risk of severe syndromes (adjusted RR 1.29, 95% CI 1.05 to 1.59). This was dose-dependently related to exposure level and duration. The cumulative exposure dose data showed an adjusted RR of 0.99 (95% CI 0.76 to 1.28) for >0-24 level years of exposure, 1.15 (95% CI 0.93 to 1.42) for 25-49 level years, 1.18 (95% CI 0.87 to 1.59) for 59-74 level years, 1.39 (95% CI 1.03 to 1.84) for 75-99 level years and 1.95 (95% CI 1.34 to 2.83) for ≥100 level years. Significant associations with severe syndromes were found in never smokers and in former/current smokers. There were no positive associations between ETS and moderate dementia syndromes. Conclusions: ETS should be considered an important risk factor for severe dementia syndromes. Avoidance of ETS may reduce the rates of severe dementia syndromes worldwide.Published versio
    corecore