360 research outputs found
FRAXE-associated mental retardation protein (FMR2) is an RNA-binding protein with high affinity for G-quartet RNA forming structure
FRAXE is a form of mild to moderate mental retardation due to the silencing of the FMR2 gene. The cellular function of FMR2 protein is presently unknown. By analogy with its homologue AF4, FMR2 was supposed to have a role in transcriptional regulation, but robust evidences supporting this hypothesis are lacking. We observed that FMR2 co-localizes with the splicing factor SC35 in nuclear speckles, the nuclear regions where splicing factors are concentrated, assembled and modified. Similarly to what was reported for splicing factors, blocking splicing or transcription leads to the accumulation of FMR2 in enlarged, rounded speckles. FMR2 is also localized in the nucleolus when splicing is blocked. We show here that FMR2 is able to specifically bind the G-quartet-forming RNA structure with high affinity. Remarkably, in vivo, in the presence of FMR2, the ESE action of the G-quartet situated in mRNA of an alternatively spliced exon of a minigene or of the putative target FMR1 appears reduced. Interestingly, FMR1 is silenced in the fragile X syndrome, another form of mental retardation. All together, our findings strongly suggest that FMR2 is an RNA-binding protein, which might be involved in alternative splicing regulation through an interaction with G-quartet RNA structure
Psychometric Curve and Behavioral Strategies for Whisker-Based Texture Discrimination in Rats
The rodent whisker system is a major model for understanding neural mechanisms for tactile sensation of surface texture (roughness). Rats discriminate surface texture using the whiskers, and several theories exist for how texture information is physically sensed by the long, moveable macrovibrissae and encoded in spiking of neurons in somatosensory cortex. However, evaluating these theories requires a psychometric curve for texture discrimination, which is lacking. Here we trained rats to discriminate rough vs. fine sandpapers and grooved vs. smooth surfaces. Rats intermixed trials at macrovibrissa contact distance (nose >2 mm from surface) with trials at shorter distance (nose <2 mm from surface). Macrovibrissae were required for distant contact trials, while microvibrissae and non-whisker tactile cues were used for short distance trials. A psychometric curve was measured for macrovibrissa-based sandpaper texture discrimination. Rats discriminated rough P150 from smoother P180, P280, and P400 sandpaper (100, 82, 52, and 35 Β΅m mean grit size, respectively). Use of olfactory, visual, and auditory cues was ruled out. This is the highest reported resolution for rodent texture discrimination, and constrains models of neural coding of texture information
Understanding Chinaβs past and future energy demand: an exergy efficiency and decomposition analysis
There are very few useful work and exergy analysis studies for China, and fewer still that consider how the results inform drivers of past and future energy consumption. This is surprising: China is the worldβs largest energy consumer, whilst exergy analysis provides a robust thermodynamic framework for analysing the technical efficiency of energy use. In response, we develop three novel sub-analyses. First we perform a long-term whole economy time-series exergy analysis for China (1971β2010). We find a 10-fold growth in Chinaβs useful work since 1971, which is supplied by a 4-fold increase in primary energy coupled to a 2.5-fold gain in aggregate exergy conversion efficiency to useful work: from 5% to 12.5%. Second, using index decomposition we expose the key driver of efficiency growth as not βtechnological leapfroggingβ but structural change: i.e. increasing reliance on thermodynamically efficient (but very energy intensive) heavy industrial activities. Third, we extend our useful work analysis to estimate Chinaβs future primary energy demand, and find values for 2030 that are significantly above mainstream projections
Diversity of Protein and mRNA Forms of Mammalian Methionine Sulfoxide Reductase B1 Due to Intronization and Protein Processing
Background: Methionine sulfoxide reductases (Msrs) are repair enzymes that protect proteins from oxidative stress by catalyzing stereospecific reduction of oxidized methionine residues. MsrB1 is a selenocysteine-containing cytosolic/nuclear Msr with high expression in liver and kidney. Principal Findings: Here, we identified differences in MsrB1 gene structure among mammals. Human MsrB1 gene consists of four, whereas the corresponding mouse gene of five exons, due to occurrence of an additional intron that flanks the stop signal and covers a large part of the 3β²-UTR. This intron evolved in a subset of rodents through intronization of exonic sequences, whereas the human gene structure represents the ancestral form. In mice, both splice forms were detected in liver, kidney, brain and heart with the five-exon form being the major form. We found that both mRNA forms were translated and supported efficient selenocysteine insertion into MsrB1. In addition, MsrB1 occurs in two protein forms that migrate as 14 and 5 kDa proteins. We found that each mRNA splice form generated both protein forms. The abundance of the 5 kDa form was not influenced by protease inhibitors, replacement of selenocysteine in the active site or mutation of amino acids in the cleavage site. However, mutation of cysteines that coordinate a structural zinc decreased the levels of 5 and 14 kDa forms, suggesting importance of protein structure for biosynthesis and/stability of these forms. Conclusions: This study characterized unexpected diversity of protein and mRNA forms of mammalian selenoprotein MsrB1
Immunity to HIV-1 Is Influenced by Continued Natural Exposure to Exogenous Virus
Unprotected sexual intercourse between individuals who are both infected with HIV-1 can lead to exposure to their partner's virus, and potentially to super-infection. However, the immunological consequences of continued exposure to HIV-1 by individuals already infected, has to our knowledge never been reported. We measured T cell responses in 49 HIV-1 infected individuals who were on antiretroviral therapy with suppressed viral loads. All the individuals were in a long-term sexual partnership with another HIV-1 infected individual, who was either also on HAART and suppressing their viral loads, or viremic (>9000 copies/ml). T cell responses to HIV-1 epitopes were measured directly ex-vivo by the IFN-Ξ³ enzyme linked immuno-spot assay and by cytokine flow cytometry. Sexual exposure data was generated from questionnaires given to both individuals within each partnership. Individuals who continued to have regular sexual contact with a HIV-1 infected viremic partner had significantly higher frequencies of HIV-1-specific T cell responses, compared to individuals with aviremic partners. Strikingly, the magnitude of the HIV-1-specific T cell response correlated strongly with the level and route of exposure. Responses consisted of both CD4+ and CD8+ T cell subsets. Longitudinally, decreases in exposure were mirrored by a lower T cell response. However, no evidence for systemic super-infection was found in any of the individuals. Continued sexual exposure to exogenous HIV-1 was associated with increased HIV-1-specific T cell responses, in the absence of systemic super-infection, and correlated with the level and type of exposure
Prevalence of Same-Sex Sexual Behavior and Associated Characteristics among Low-Income Urban Males in Peru
Peru has a concentrated HIV epidemic in which men who have sex with men are particularly vulnerable. We describe the lifetime prevalence of same-sex sexual contact and associated risk behaviors of men in Peru's general population, regardless of their sexual identity.A probability sample of males from low-income households in three Peruvian cities completed an epidemiologic survey addressing their sexual risk behavior, including sex with other men. Serum was tested for HSV-2, HIV, and syphilis. Urine was tested for chlamydia and gonorrhea. A total of 2,271 18-30 year old men and women were contacted, of whom 1,645 (72.4%) agreed to participate in the study. Among the sexually experienced men surveyed, 15.2% (85/558, 95% CI: 12.2%-18.2%) reported a history of sex with other men. Men ever reporting sex with men (MESM) had a lower educational level, had greater numbers of sex partners, and were more likely to engage in risk behaviors including unprotected sex with casual partners, paying for or providing compensated sex, and using illegal drugs. MESM were also more likely to have had previous STI symptoms or a prior STI diagnosis, and had a greater prevalence of HSV-2 seropositivity.Many low-income Peruvian men have engaged in same-sex sexual contact and maintain greater behavioral and biological risk factors for HIV/STI transmission than non-MESM. Improved surveillance strategies for HIV and STIs among MESM are necessary to better understand the epidemiology of HIV in Latin America and to prevent its further spread
Spt6 is a maintenance factor for centromeric CENP-A
Replication and transcription of genomic DNA requires partial disassembly of nucleosomes to allow progression of polymerases. This presents both an opportunity to remodel the underlying chromatin and a danger of losing epigenetic information. Centromeric transcription is required for stable incorporation of the centromere-specific histone dCENP-A in M/G1 phase, which depends on the eviction of previously deposited H3/H3.3-placeholder nucleosomes. Here we demonstrate that the histone chaperone and transcription elongation factor Spt6 spatially and temporarily coincides with centromeric transcription and prevents the loss of old CENP-A nucleosomes in both Drosophila and human cells. Spt6 binds directly to dCENP-A and dCENP-A mutants carrying phosphomimetic residues alleviate this association. Retention of phosphomimetic dCENP-A mutants is reduced relative to wildtype, while non-phosphorylatable dCENP-A retention is increased and accumulates at the centromere. We conclude that Spt6 acts as a conserved CENP-A maintenance factor that ensures long-term stability of epigenetic centromere identity during transcription-mediated chromatin remodeling
Human Cytomegalovirus Induces TGF-Ξ²1 Activation in Renal Tubular Epithelial Cells after Epithelial-to-Mesenchymal Transition
Human cytomegalovirus (HCMV) infection is associated epidemiologically with poor outcome of renal allografts due to mechanisms which remain largely undefined. Transforming growth factor-Ξ²1 (TGF-Ξ²1), a potent fibrogenic cytokine, is more abundant in rejecting renal allografts that are infected with either HCMV or rat CMV as compared to uninfected, rejecting grafts. TGF-Ξ²1 induces renal fibrosis via epithelial-to-mesenchymal transition (EMT) of renal epithelial cells, a process by which epithelial cells acquire mesenchymal characteristics and a migratory phenotype, and secrete molecules associated with extracellular matrix deposition and remodeling. We report that human renal tubular epithelial cells infected in vitro with HCMV and exposed to TGF-Ξ²1 underwent morphologic and transcriptional changes of EMT, similar to uninfected cells. HCMV infected cells after EMT also activated extracellular latent TGF-Ξ²1 via induction of MMP-2. Renal epithelial cells transiently transfected with only the HCMV IE1 or IE2 open reading frames and stimulated to undergo EMT also induced TGF-Ξ²1 activation associated with MMP-2 production, suggesting a role for these viral gene products in MMP-2 production. Consistent with the function of these immediate early gene products, the antiviral agents ganciclovir and foscarnet did not inhibit TGF-Ξ²1 production after EMT by HCMV infected cells. These results indicate that HCMV infected renal tubular epithelial cells can undergo EMT after exposure to TGF-Ξ²1, similar to uninfected renal epithelial cells, but that HCMV infection by inducing active TGF-Ξ²1 may potentiate renal fibrosis. Our findings provide in vitro evidence for a pathogenic mechanism that could explain the clinical association between HCMV infection, TGF-Ξ²1, and adverse renal allograft outcome
Prenatal Hypoxic-Ischemic Insult Changes the Distribution and Number of NADPH-Diaphorase Cells in the Cerebellum
Astrogliosis, oligodendroglial death and motor deficits have been observed in the offspring of female rats that had their uterine arteries clamped at the 18th gestational day. Since nitric oxide has important roles in several inflammatory and developmental events, here we evaluated NADPH-diaphorase (NADPH-d) distribution in the cerebellum of rats submitted to this hypoxia-ischemia (HI) model. At postnatal (P) day 9, Purkinje cells of SHAM and non-manipulated (NM) animals showed NADPH-d+ labeling both in the cell body and dendritic arborization in folia 1 to 8, while HI animals presented a weaker labeling in both cellular structures. NADPH-d+ labeling in the molecular (ML), and in both the external and internal granular layer, was unaffected by HI at this age. At P23, labeling in Purkinje cells was absent in all three groups. Ectopic NADPH-d+ cells in the ML of folia 1 to 4 and folium 10 were present exclusively in HI animals. This labeling pattern was maintained up to P90 in folium 10. In the cerebellar white matter (WM), at P9 and P23, microglial (ED1+) NADPH-d+ cells, were observed in all groups. At P23, only HI animals presented NADPH-d labeling in the cell body and processes of reactive astrocytes (GFAP+). At P9 and P23, the number of NADPH-d+ cells in the WM was higher in HI animals than in SHAM and NM ones. At P45 and at P90 no NADPH-d+ cells were observed in the WM of the three groups. Our results indicate that HI insults lead to long-lasting alterations in nitric oxide synthase expression in the cerebellum. Such alterations in cerebellar differentiation might explain, at least in part, the motor deficits that are commonly observed in this model
- β¦