101 research outputs found

    Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions

    Get PDF
    Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell ‘stemness’ and tumorigenesis. Msi1 reportedly binds to the 3′-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between β1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins

    Structural Model of the Rev Regulatory Protein from Equine Infectious Anemia Virus

    Get PDF
    Rev is an essential regulatory protein in the equine infectious anemia virus (EIAV) and other lentiviruses, including HIV-1. It binds incompletely spliced viral mRNAs and shuttles them from the nucleus to the cytoplasm, a critical prerequisite for the production of viral structural proteins and genomic RNA. Despite its important role in production of infectious virus, the development of antiviral therapies directed against Rev has been hampered by the lack of an experimentally-determined structure of the full length protein. We have used a combined computational and biochemical approach to generate and evaluate a structural model of the Rev protein. The modeled EIAV Rev (ERev) structure includes a total of 6 helices, four of which form an anti-parallel four-helix bundle. The first helix contains the leucine-rich nuclear export signal (NES). An arginine-rich RNA binding motif, RRDRW, is located in a solvent-exposed loop region. An ERLE motif required for Rev activity is predicted to be buried in the core of modeled structure where it plays an essential role in stabilization of the Rev fold. This structural model is supported by existing genetic and functional data as well as by targeted mutagenesis of residues predicted to be essential for overall structural integrity. Our predicted structure should increase understanding of structure-function relationships in Rev and may provide a basis for the design of new therapies for lentiviral diseases

    Convenient method for resolving degeneracies due to symmetry of the magnetic susceptibility tensor and its application to pseudo contact shift-based protein–protein complex structure determination

    Get PDF
    Pseudo contact shifts (PCSs) induced by paramagnetic lanthanide ions fixed in a protein frame provide long-range distance and angular information, and are valuable for the structure determination of protein–protein and protein–ligand complexes. We have been developing a lanthanide-binding peptide tag (hereafter LBT) anchored at two points via a peptide bond and a disulfide bond to the target proteins. However, the magnetic susceptibility tensor displays symmetry, which can cause multiple degenerated solutions in a structure calculation based solely on PCSs. Here we show a convenient method for resolving this degeneracy by changing the spacer length between the LBT and target protein. We applied this approach to PCS-based rigid body docking between the FKBP12-rapamycin complex and the mTOR FRB domain, and demonstrated that degeneracy could be resolved using the PCS restraints obtained from two-point anchored LBT with two different spacer lengths. The present strategy will markedly increase the usefulness of two-point anchored LBT for protein complex structure determination

    Distinct Steps of Neural Induction Revealed by Asterix, Obelix and TrkC, Genes Induced by Different Signals from the Organizer

    Get PDF
    The amniote organizer (Hensen's node) can induce a complete nervous system when grafted into a peripheral region of a host embryo. Although BMP inhibition has been implicated in neural induction, non-neural cells cannot respond to BMP antagonists unless previously exposed to a node graft for at least 5 hours before BMP inhibitors. To define signals and responses during the first 5 hours of node signals, a differential screen was conducted. Here we describe three early response genes: two of them, Asterix and Obelix, encode previously undescribed proteins of unknown function but Obelix appears to be a nuclear RNA-binding protein. The third is TrkC, a neurotrophin receptor. All three genes are induced by a node graft within 4–5 hours but they differ in the extent to which they are inducible by FGF: FGF is both necessary and sufficient to induce Asterix, sufficient but not necessary to induce Obelix and neither sufficient nor necessary for induction of TrkC. These genes are also not induced by retinoic acid, Noggin, Chordin, Dkk1, Cerberus, HGF/SF, Somatostatin or ionomycin-mediated Calcium entry. Comparison of the expression and regulation of these genes with other early neural markers reveals three distinct “epochs”, or temporal waves, of gene expression accompanying neural induction by a grafted organizer, which are mirrored by specific stages of normal neural plate development. The results are consistent with neural induction being a cascade of responses elicited by different signals, culminating in the formation of a patterned nervous system

    the

    No full text

    Teaching the teachers:Re-educating Australian teachers in indigenous education

    No full text
    Recent Australian education reform has resulted in qualified teachers recognising that they are inadequately prepared to teach content within the area of Indigenous education. The knowledge and theoretical understanding imparted in teacher education programs over the past decades did not prepare educators to embed Indigenous content across all years and areas of the curriculum. Today, pre-teachers in Australian universities are assessed on their ability to deliver content that is relevant to Aboriginal and Torres Strait Islander students and peoples in our contemporary world, to varying degrees. This chapter aims to discuss some of the challenges facing the embedding of meaningful Indigenous content in schools today. These include, but are not limited to: lack of teacher preparedness, a lack of Indigenous content historically in Australian schooling, a lack of Indigenous teachers, the experiences of racism and discrimination faced by Indigenous staff and students in schools as well as a lack of Indigenous content in university teacher preparation courses. This chapter is informed by my learnings as an Aboriginal educator, and is a sharing of experiences aimed at informing the reader of the challenges. I will also consider what a culturally inclusive Australian schooling system might look like in the foreseeable future

    Mapping the interaction between the cytoplasmic domains of HIV-1 VpU and human CD4 using NMR spectroscopy.

    No full text
    Viral protein U (VpU) of HIV-1 plays an important role in downregulation of the main HIV-1 receptor CD4 from the surface of infected cells. Physical binding of VpU to newly synthesized CD4 in the endoplasmic reticulum is an early step in a pathway leading to proteasomal degradation of CD4. In this study, regions in the cytoplasmic domain of VpU involved in CD4 binding were identified by NMR spectroscopy. Amino acids in both helices found in the cytoplasmic region of VpU in membrane-mimicking detergent micelles experience chemical shift perturbations upon binding to CD4, whereas amino acids between the two helices and at the C-terminus of VpU show no or only small changes, respectively. The topology of the complex was further studied with paramagnetic relaxation enhancement. Paramagnetic spin labels were attached at three sequence positions of a CD4 peptide comprising the transmembrane and cytosolic domains of the receptor. VpU binds to a membrane-proximal region in the cytoplasmic domain of CD4

    Nucleic acid recognition and antiviral activity of 1,4-substituted terphenyl compounds mimicking all faces of the HIV-1 Rev protein positively-charged α-helix

    Get PDF
    Small synthetic molecules mimicking the three-dimensional structure of α-helices may find applications as inhibitors of therapeutically relevant protein-protein and protein-nucleic acid interactions. However, the design and use of multi-facial helix mimetics remains in its infancy. Here we describe the synthesis and application of novel bilaterally substituted p-terphenyl compounds containing positively-charged aminoalkyl groups in relative 1,4 positions across the aromatic scaffold. These compounds were specifically designed to mimic all faces of the arginine-rich α-helix of the HIV-1 protein Rev, which forms deeply embedded RNA complexes and plays key roles in the virus replication cycle. Two of these molecules recognized the Rev site in the viral RNA and inhibited the formation of the RRE-Rev ribonucleoprotein complex, a currently unexploited target in HIV chemotherapy. Cellular assays revealed that the most active compounds blocked HIV-1 replication with little toxicity, and likely exerted this effect through a multi-target mechanism involving inhibition of viral LTR promoter-dependent transcription and Rev function. Further development of this scaffold may open new avenues for targeting nucleic acids and may complement current HIV therapies, none of which involve inhibitors interfering with the gene regulation processes of the virus.This project was supported by Ministerio de Economía y Competitividad of Spain (Grants BFU2012–30770 and BFU2015–65103-R to J.G.; CTQ2013-43310 and CTQ2017-84249-P to S.F. and FIS PI16CIII/0034 to J.A.; and FPU15/01485 predoctoral fellowship to D.M.S.), Generalitat Valenciana of Spain (FPA/2015/014 and APOTIP/2016/A007 to J.G. and PROMETEOII/2014/073 to S.F.), the Spanish AIDS Research Network (RD16CIII/0002/0001-ISCIII–FEDER to J.A.), Universidad Católica de Valencia (2017-114-001 and 2018-114-001 to J.G.), and European AIDS Vaccine Initiative 2020 (ID 681137 to J.A.). The authors thank Ainhoa Sánchez for carrying out initial fluorescence anisotropy experiments, Ángel Cantero-Camacho for designing and testing the primers used to amplify LTRc, and Jerónimo Bravo and Antonio Pineda for facilitating access to ITC equipment. Plasmid pLTR(HTLV)-luc (pGL4.20-U3R) was kindly donated by Thomas Kress.S
    corecore