38 research outputs found

    Prostaglandin E2 stimulates progression-related gene expression in early colorectal adenoma cells

    Get PDF
    Upregulation of cyclooxygenase-2 (COX-2) and prostaglandin-dependent vascularisation in small adenomatous polyps is an essential part of colon carcinogenesis. To study the underlying cellular mechanisms, LT97 and Caco2 human colorectal tumour cells not expressing endogenous COX-2 were exposed to 1 μM prostaglandin E2 (PGE2) in their medium. At 30 min after addition, expression of c-fos was stimulated 5-fold and 1.3-fold, respectively, depending on the activation of both extracellular signal-regulated kinase and p38. The amount of c-jun in nuclear extracts was increased 20% in LT97 cells. Expression of COX-2 was upregulated 1.7-fold in LT97 cells and 1.5-fold in Caco2 2 h after prostaglandin (PG) addition by a p38-mediated pathway. The known PGE2 target gene vascular endothelial growth factor (VEGF) was not modulated. Effects of sustained PGE2 production were studied in VACO235 cells that have high endogenous COX-2 and in LT97 cells infected with an adenovirus expressing COX-2. Prostaglandin E2 secretion into the medium was 1–2 nM and 250 pM, respectively. Expression of both VEGF and c-fos was high in VACO235 cells. In LT97 cells, COX-2 upregulated c-fos expression and c-jun content in nuclear extracts 1.7- and 1.2-fold, respectively, in a PG-dependent way. This shows that exogenous PGE2 as well as COX-2 overexpression affect signalling and gene expression in a way that enhances tumour progression

    Acidic preconditioning protects endothelial cells against apoptosis through p38- and Akt-dependent Bcl-xL overexpression

    Get PDF
    To analyze the underlying cellular mechanisms of adaptation to ischemia-induced apoptosis through short acidic pretreatment, i.e. acidic preconditioning (APC), Wistar rat coronary endothelial cells (EC) were exposed for 40 min to acidosis (pH 6.4) followed by a 14 h recovery period (pH 7.4) and finally treated for 2 h with simulated in vitro ischemia (glucose-free anoxia at pH 6.4). APC led to a transient activation of p38 and Akt kinases, but not of JNK and ERK1/2 kinases, which was accompanied by significant reduction of the apoptotic cell number, caspase-12/-3 cleavage and Bcl-xL overexpression. These effects of APC were completely abolished by prevention of Akt- or p38-phosphorylation during APC. Furthermore, knock-down of Bcl-xL by siRNA-transfection also abolished the anti-apoptotic effect of APC. Therefore, APC leads to protection of EC against ischemic apoptosis by activation of Akt and p38 followed by overexpression of Bcl-xL, which is a key anti-apoptotic mechanism of APC

    Effects of magnolol on UVB-induced skin cancer development in mice and its possible mechanism of action

    Get PDF
    Background Magnolol, a plant lignan isolated from the bark and seed cones of Magnolia officinalis, has been shown to have chemopreventive effects on chemically-induced skin cancer development. The objectives of this investigation are to study the anticarcinogenic effects of magnolol on UVB-induced skin tumor development in SKH-1 mice, a model relevant to humans, and determine the possible role of apoptosis and cell cycle arrest involved in the skin tumor development. Methods UVB-induced skin carcinogenesis model in SKH-1 mice was used for determining the preventive effects of magnolol on skin cancer development. Western blottings and flow cytometric analysis were used to study the effects of magnolol on apoptosis and cell cycle. Results Magnolol pretreated groups (30, 60 μ g) before UVB treatments (30 mJ/cm2, 5 days/week) resulted in 27-55% reduction in tumor multiplicity as compared to control group in SKH-1 mice. Magnolol pretreatment increased the cleavage of caspase-8 and poly-(-ADP-ribose) polymerase (PARP), increased the expression of p21, a cell cycle inhibitor, and decreased the expression of proteins involved in the G2/M phase of cell cycle in skin samples from SKH-1 mice. Treatment of A431 cells with magnolol decreased cell viability and cell proliferation in a concentration dependent manner. Magnolol induced G2/M phase cell cycle arrest in A431 cells at 12 h with a decreased expression of cell cycle proteins such as cyclin B1, cyclin A, CDK4, Cdc2 and simultaneous increase in the expression of Cip/p21, a cyclin-dependent kinase inhibitor. Magnolol induced apoptosis in vivo and in vitro with an increased cleavage of caspase-8 and PARP. Phospho-signal transducers and activators of transcription 3 (Tyr705), B-Raf, p-MEK, and p-AKT were down-regulated, whereas phosphorylation of ERK was induced by magnolol in A431 cells. Conclusions Magnolol pretreatments prevent UVB-induced skin cancer development by enhancing apoptosis, causing cell cycle arrest at G2/M phase, and affecting various signaling pathways. Magnolol could be a potentially safe and potent anticarcinogenic agent against skin cancer

    Docosahexaenoic Acid Inhibits UVB-Induced Activation of NF-κB and Expression of COX-2 and NOX-4 in HR-1 Hairless Mouse Skin by Blocking MSK1 Signaling

    Get PDF
    Exposure to ultraviolet-B (UVB) radiation induces inflammation and photocarcinogenesis in mammalian skin. Docosahexaenoic acid (DHA), a representative ω-3 polyunsaturated fatty acid, has been reported to possess anti-inflammatory and chemopreventive properties. In the present study, we investigated the molecular mechanisms underlying the inhibitory effects of DHA on UVB-induced inflammation in mouse skin. Our study revealed that topical application of DHA prior to UVB irradiation attenuated the expression of cyclooxygenase-2 (COX-2) and NAD(P)H:oxidase-4 (NOX-4) in hairless mouse skin. DHA pretreatment also attenuated UVB-induced DNA binding of nuclear factor-kappaB (NF-κB) through the inhibition of phosphorylation of IκB kinase-α/β, phosphorylation and degradation of IκBα and nuclear translocation of p50 and p65. In addition, UVB-induced phosphorylation of p65 at the serine 276 residue was significantly inhibited by topical application of DHA. Irradiation with UVB induced phosphorylation of mitogen and stress-activated kinase-1 (MSK1), extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein (MAP) kinase, and all these events were attenuated by pretreatment with DHA. Blocking ERK and p38 MAP kinase signaling by U0126 and SB203580, respectively, diminished MSK1 phosphorylation in UVB-irradiated mouse skin. Pretreatment with H-89, a pharmacological inhibitor of MSK1, abrogated UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 in mouse skin. In conclusion, topically applied DHA inhibits the UVB-induced activation of NF-κB and the expression of COX-2 and NOX-4 by blocking the phosphorylation of MSK1, a kinase downstream of ERK and p38 MAP kinase, in hairless mouse skin

    p38 Mitogen-Activated Protein Kinase-Dependent Chemokine Production, Leukocyte Recruitment, and Hepatocellular Apoptosis in Endotoxemic Liver Injury

    No full text
    OBJECTIVE: To determine the role of p38 mitogen-activated protein kinase (MAPK) signaling in endotoxin-induced liver injury. BACKGROUND: MAPKs have been reported to play a potential role in regulating inflammatory responses, but the role of p38 MAPK signaling in chemokine production, leukocyte recruitment, and hepatocellular apoptosis in the liver of endotoxemic mice is not known. METHODS: Endotoxin-induced leukocyte-endothelium interactions were studied by use of intravital fluorescence microscopy in the mouse liver. Tumor necrosis factor-α (TNF-α) and CXC chemokines, liver enzymes, and apoptosis were determined 6 hours after endotoxin challenge. The specific p38 MAPK inhibitor SB 239063 was given immediately prior to endotoxin exposure. Phosphorylation and activity of p38 MAPK were determined by immunoprecipitation and Western blot. RESULTS: Endotoxin increased phosphorylation and activity of p38 MAPK in the liver, which was markedly inhibited by SB 239063. Inhibition of p38 MAPK signaling dose-dependently decreased endotoxin-induced leukocyte rolling, adhesion, and sinusoidal sequestration of leukocytes. SB 239063 markedly reduced endotoxin-induced formation of TNF-α and CXC chemokines in the liver. Indeed, the endotoxin-provoked increase of liver enzymes and hepatocellular apoptosis were abolished and sinusoidal perfusion was restored in endotoxemic mice treated with SB 239063. CONCLUSIONS: This study demonstrates that p38 MAPK signaling plays an important role in regulating TNF-α and CXC chemokine production in endotoxemic liver injury and that inhibition of p38 MAPK activity abolishes endotoxin-induced leukocyte infiltration as well as hepatocellular apoptosis. These novel findings suggest that interference with the p38 MAPK pathway may constitute a therapeutic strategy against septic liver damage
    corecore