94 research outputs found

    Acute-Phase-HDL Remodeling by Heparan Sulfate Generates a Novel Lipoprotein with Exceptional Cholesterol Efflux Activity from Macrophages

    Get PDF
    During episodes of acute-inflammation high-density lipoproteins (HDL), the carrier of so-called good cholesterol, experiences a major change in apolipoprotein composition and becomes acute-phase HDL (AP-HDL). This altered, but physiologically important, HDL has an increased binding affinity for macrophages that is dependent on cell surface heparan sulfate (HS). While exploring the properties of AP-HDL∶HS interactions we discovered that HS caused significant remodeling of AP-HDL. The physical nature of this change in structure and its potential importance for cholesterol efflux from cholesterol-loaded macrophages was therefore investigated. In the presence of heparin, or HS, AP-HDL solutions at pH 5.2 became turbid within minutes. Analysis by centrifugation and gel electrophoresis indicated that AP-HDL was remodeled generating novel lipid poor particles composed only of apolipoprotein AI, which we designate β2. This remodeling is dependent on pH, glycosaminoglycan type, is promoted by Ca2+ and is independent of protease or lipase activity. Compared to HDL and AP-HDL, remodeled AP-HDL (S-HDL-SAA), containing β2 particles, demonstrated a 3-fold greater cholesterol efflux activity from cholesterol-loaded macrophage. Because the identified conditions causing this change in AP-HDL structure and function can exist physiologically at the surface of the macrophage, or in its endosomes, we postulate that AP-HDL contains latent functionalities that become apparent and active when it associates with macrophage cell surface/endosomal HS. In this way initial steps in the reverse cholesterol transport pathway are focused at sites of injury to mobilize cholesterol from macrophages that are actively participating in the phagocytosis of damaged membranes rich in cholesterol. The mechanism may also be of relevance to aspects of atherogenesis

    AA-Amyloidosis Can Be Transferred by Peripheral Blood Monocytes

    Get PDF
    Spongiform encephalopathies have been reported to be transmitted by blood transfusion even prior to the clinical onset. Experimental AA-amyloidosis shows similarities with prion disease and amyloid-containing organ-extracts can prime a recipient for the disease. In this systemic form of amyloidosis N-terminal fragments of the acute-phase reactant apolipoprotein serum amyloid A are the main amyloid protein. Initial amyloid deposits appear in the perifollicular region of the spleen, followed by deposits in the liver. We used the established murine model and induced AA-amyloidosis in NMRI mice by intravenous injections of purified amyloid fibrils (‘amyloid enhancing factor’) combined with inflammatory challenge (silver nitrate subcutaneously). Blood plasma and peripheral blood monocytes were isolated, sonicated and re-injected into new recipients followed by an inflammatory challenge during a three week period. When the animals were sacrificed presence of amyloid was analyzed in spleen sections after Congo red staining. Our result shows that some of the peripheral blood monocytes, isolated from animals with detectable amyloid, contained amyloid-seed that primed for AA-amyloid. The seeding material seems to have been phagocytosed by the cells since the AA-precursor (SAA1) was found not be expressed by the monocytes. Plasma recovered from mice with AA amyloidosis lacked seeding capacity. Amyloid enhancing activity can reside in monocytes recovered from mice with AA-amyloidosis and in a prion-like way trigger amyloid formation in conjunction with an inflammatory disorder. Human AA-amyloidosis resembles the murine form and every individual is expected to be exposed to conditions that initiate production of the acute-phase reactant. The monocyte-transfer mechanism should be eligible for the human disease and we point out blood transfusion as a putative route for transfer of amyloidosis

    Organization of sensory feature selectivity in the whisker system

    Get PDF
    Our sensory receptors are faced with an onslaught of different environmental inputs. Each sensory event or encounter with an object involves a distinct combination of physical energy sources impinging upon receptors. In the rodent whisker system, each primary afferent neuron located in the trigeminal ganglion innervates and responds to a single whisker and encodes a distinct set of physical stimulus properties – features – corresponding to changes in whisker angle and shape and the consequent forces acting on the whisker follicle. Here we review the nature of the features encoded by successive stages of processing along the whisker pathway. At each stage different neurons respond to distinct features, such that the population as a whole represents diverse properties. Different neuronal types also have distinct feature selectivity. Thus, neurons at the same stage of processing and responding to the same whisker nevertheless play different roles in representing objects contacted by the whisker. This diversity, combined with the precise timing and high reliability of responses, enables populations at each stage to represent a wide range of stimuli. Cortical neurons respond to more complex stimulus properties – such as correlated motion across whiskers – than those at early subcortical stages. Temporal integration along the pathway is comparatively weak: neurons up to barrel cortex are sensitive mainly to fast (tens of milliseconds) fluctuations in whisker motion. The topographic organization of whisker sensitivity is paralleled by systematic organization of neuronal selectivity to certain other physical features, but selectivity to touch and to dynamic stimulus properties is distributed in “salt-and-pepper” fashion

    Global Experiences on Wastewater Irrigation: Challenges and Prospects

    Get PDF
    corecore