9 research outputs found

    Composition and distribution of cell wall phenolic compounds in flax (Linum usitatissimum L.) stem tissues

    No full text
    Cell wall phenolic compounds were analysed in xylem and bast fibre-rich peels of flax stems by biochemical, histochemical and ultrastructural approaches. Localization of cell wall phenolics by the enzyme-gold method using laccase revealed several gold particle distribution patterns. One of the major types (an even distribution of single gold particles) was present mainly in xylem, while the other (compact branched groups of ten–40 gold particles) was found both in xylem and fibre cells. The lignin content of the stem parts was estimated by the Klason procedure and by the thioglycolic acid assay, and the phenolic products recovered after alkaline cupric oxide oxidation of cell walls were analysed by GC. By combining chemical analysis data and the frequency of various gold particle types within the tissues, different patterns of gold particle distribution could be ascribed to certain cell wall phenolics; lignin was stained as evenly distributed single gold particles, while branched clusters represented hydroxycinnamic acids. The Klason procedure did not remove all the non-lignin components from flax fibres, known for their highly crystalline cellulose, and considerably overestimated the lignin content. The thioglycolic acid assay results were consistent with GC and microscopic observations

    A blast from the infant Universe: the very high-z GRB 210905A

    No full text
    International audienceWe present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB 210905A lies in the top ~7% of gamma-ray bursts (GRBs) in terms of energy released. Its afterglow is among the most luminous ever observed. It starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ~ 46.2+-16.3 d (~6.3 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to the contribution from the likely host galaxy, the fourth GRB host at z > 6 known to date. We derived a half-opening angle of 8.4+-1.0 degrees, which is the highest ever measured for a z>6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of 1E52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift

    A blast from the infant Universe: the very high-z GRB 210905A

    Get PDF
    We present a detailed follow-up of the very energetic GRB 210905A at a high redshift of z = 6.312 and its luminous X-ray and optical afterglow. We obtained a photometric and spectroscopic follow-up in the optical and near-infrared (NIR), covering both the prompt and afterglow emission from a few minutes up to 20 Ms after burst. With an isotropic gamma-ray energy release of Eiso = 1.27E54 erg, GRB 210905A lies in the top ~7% of gamma-ray bursts (GRBs) in terms of energy released. Its afterglow is among the most luminous ever observed. It starts with a shallow evolution that can be explained by energy injection, and it is followed by a steeper decay, while the spectral energy distribution is in agreement with slow cooling in a constant-density environment within the standard fireball theory. A jet break at ~ 46.2+-16.3 d (~6.3 d rest-frame) has been observed in the X-ray light curve; however, it is hidden in the H band due to the contribution from the likely host galaxy, the fourth GRB host at z > 6 known to date. We derived a half-opening angle of 8.4+-1.0 degrees, which is the highest ever measured for a z>6 burst, but within the range covered by closer events. The resulting collimation-corrected gamma-ray energy release of 1E52 erg is also among the highest ever measured. The moderately large half-opening angle argues against recent claims of an inverse dependence of the half-opening angle on the redshift. The total jet energy is likely too large to be sustained by a standard magnetar, and it suggests that the central engine of this burst was a newly formed black hole. Despite the outstanding energetics and luminosity of both GRB 210905A and its afterglow, we demonstrate that they are consistent with those of less distant bursts, indicating that the powering mechanisms and progenitors do not evolve significantly with redshift

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore