11 research outputs found

    NPARSEC : NTT Parallaxes of Southern Extremely Cool objects. Goals, targets, procedures and first results

    Get PDF
    The discovery and subsequent detailed study of T dwarfs have provided many surprises and pushed the physics and modelling of cool atmospheres in unpredicted directions. Distance is a critical parameter for studies of these objects to determine intrinsic luminosities, test binarity and measure their motion in the Galaxy. We describe a new observational programme to determine distances across the full range of T-dwarf subtypes using the New Technology Telescope (NTT)/SOFI telescope/instrument combination. We present preliminary results for ten objects, five of which represent new distances.Peer reviewe

    Phenomenology of the Lense-Thirring effect in the Solar System

    Full text link
    Recent years have seen increasing efforts to directly measure some aspects of the general relativistic gravitomagnetic interaction in several astronomical scenarios in the solar system. After briefly overviewing the concept of gravitomagnetism from a theoretical point of view, we review the performed or proposed attempts to detect the Lense-Thirring effect affecting the orbital motions of natural and artificial bodies in the gravitational fields of the Sun, Earth, Mars and Jupiter. In particular, we will focus on the evaluation of the impact of several sources of systematic uncertainties of dynamical origin to realistically elucidate the present and future perspectives in directly measuring such an elusive relativistic effect.Comment: LaTex, 51 pages, 14 figures, 22 tables. Invited review, to appear in Astrophysics and Space Science (ApSS). Some uncited references in the text now correctly quoted. One reference added. A footnote adde

    The restoration of the quadrupole light bending: the Gaia Relativistic EXperiment (GAREX-II)

    No full text
    The ESA astrometric mission Gaia (launch in late 2011) will be able to put to test General Relativity (GR) also thanks to a differential experiment, GAREX, implemented in the form of repeated Eddington-like measurement, aiming at measuring, for the first time, the quadrupole light bending due to an oblate planet

    Parallaxes of southern extremely cool objects. I. : Targets, proper motions, and first results

    Get PDF
    ‘In these times, during the rise in the popularity of institutional repositories, the Society does not forbid authors from depositing their work in such repositories. However, the AAS regards the deposit of scholarly work in such repositories to be a decision of the individual scholar, as long as the individual's actions respect the diligence of the journals and their reviewers.’ Original article can be found at: http://iopscience.iop.org/ Copyright American Astronomical SocietyWe present results from the PARallaxes of Southern Extremely Cool objects ( PARSEC) program, an observational program begun in 2007 April to determine parallaxes for 122 L and 28 T southern hemisphere dwarfs using the Wide Field Imager on the ESO 2.2 m telescope. The results presented here include parallaxes of 10 targets from observations over 18 months and a first version proper motion catalog. The proper motions were obtained by combining PARSEC observations astrometrically reduced with respect to the Second US Naval Observatory CCD Astrograph Catalog, and the Two Micron All Sky Survey Point Source Catalog. The resulting median proper motion precision is 5 mas yr(-1) for 195,700 sources. The 140 0.3 deg(2) fields sample the southern hemisphere in an unbiased fashion with the exception of the galactic plane due to the small number of targets in that region. The proper motion distributions are shown to be statistically well behaved. External comparisons are also fully consistent. We will continue to update this catalog until the end of the program, and we plan to improve it including also observations from the GSC2.3 database. We present preliminary parallaxes with a 4.2 mas median precision for 10 brown dwarfs, two of which are within 10 pc. These increase the present number of L dwarfs by 20% with published parallaxes. Of the 10 targets, seven have been previously discussed in the literature: two were thought to be binary, but the PARSEC observations show them to be single; one has been confirmed as a binary companion and another has been found to be part of a binary system, both of which will make good benchmark systems. These results confirm that the foreseen precision of PARSEC can be achieved and that the large field of view will allow us to identify wide binary systems. Observations for the PARSEC program will end in early 2011 providing three to four years of coverage for all targets. The main expected outputs are: more than a 100% increase in the number of L dwarfs with parallaxes, increment in! the num ber of objects per spectral subclass up to L9-in conjunction with published results-to at least 10, and to put sensible limits on the general binary fraction of brown dwarfs. We aim to contribute significantly to the understanding of the faint end of the H-R diagram and of the L/T transition region.Peer reviewe

    Astrometric observable and relativistic astrometric catalogues

    No full text
    We describe a way to compare current relativistic astrometric models accurate to the micro-arcsecond level from which an astrometric catalogue will be deduced. The observed stellar direction can be written as a function of several parts, linking the astrometric observables to the relativistic effects associated to the stellar kinematical properties and distances as seen inside the gravitational field of our Solar System, i.e. the so called relativistic astrometric parameters, providing a tool for comparing the RAMOD framework to the pM/pN approaches

    On the universality of free fall, the equivalence principle and the gravitational redshift

    No full text
    Through the contributions of Galileo, Newton, and Einstein, we recall the universality of free fall (UFF), the weak equivalence principle (WEP), and the strong equivalence principle (SEP), in order to stress that general relativity requires all test masses to be equally accelerated in a gravitational field; that is, it requires UFF and WEP to hold. The possibility of testing this crucial fact with null, highly sensitive experiments makes these the most powerful tests of the theory. Following Schiff, we derive the gravitational redshift from the WEP and special relativity and show that, as long as clocks are affected by a gravitating body like normal matter, measurement of the redshift is a test of UFF/WEP but cannot compete with direct null tests. A new measurement of the gravitational redshift based on free-falling cold atoms and an absolute gravimeter is not competitive either. Finally, we compare UFF/WEP experiments using macroscopic masses as test bodies in one case and cold atoms in the other. We conclude that there is no difference in the nature of the test and that the merit of any such experiment rests on the accuracy it can achieve and on the physical differences between the elements it can test, macroscopic proof masses being superior in both respects
    corecore