198 research outputs found
Loop bounds on non-standard neutrino interactions
We reconsider the bounds on non-standard neutrino interactions with matter
which can be derived by constraining the four-charged-lepton operators induced
at the loop level. We find that these bounds are model dependent. Naturalness
arguments can lead to much stronger constraints than those presented in
previous studies, while no completely model-independent bounds can be derived.
We will illustrate how large loop-contributions to four-charged-lepton
operators are induced within a particular model that realizes gauge invariant
non-standard interactions and discuss conditions to avoid these bounds. These
considerations mainly affect the constraint on the
non-standard coupling strength \eps_{e\mu}, which is lost. The only
model-independent constraints that can be derived are .
However, significant cancellations are required in order to saturate this
bound.Comment: Minor changes, version to be published in JHEP. 17 pages, 3 Axodraw
figures, REVTeX
Leptogenesis and neutrino parameters
We calculate the baryonic asymmetry of the universe in the
baryogenesis-via-leptogenesis framework, assuming first a quark-lepton symmetry
and then a charged-neutral lepton symmetry. We match the results with the
experimentally favoured range. In the first case all the oscillation solutions
to the solar neutrino problem, except the large mixing matter solution, can
lead to the allowed range, but with fine tuning of the parameters. In the
second case the general result is quite similar. Some related theoretical hints
are discussed.Comment: RevTex, 21 pages with 8 figure
Model for fermion mass matrices and the origin of quark-lepton symmetry
Several phenomenological features of fermion masses and mixings can be
accounted for by a simple model for fermion mass matrices, which suggests an
underlying U(2) horizontal symmetry. In this context, it is also proposed how
an approximate quark-lepton symmetry can be achieved without unified gauge
theories.Comment: 12 pages, RevTex. Minor changes, some references adde
Unitarity Constraints for New Physics Induced by dim-6 Operators
We compute the helicity amplitudes for boson-boson scattering at high energy
due to the operators \O_{B\Phi}, \O_{W\Phi} and \O_{UB}, and we derive
the corresponding unitarity bounds. Thus, we provide relations between the
couplings of these operators and the corresponding New Physics thresholds,
where either unitarity is saturated or new degrees of freedom are excited. We
compare the results with those previously obtained for the operators \O_W and
\O_{UW} and we discuss their implications for direct and indirect tests at
present and future colliders. The present treatment completes the study of the
unitarity constraints for all blind bosonic operators.Comment: 41 pages, latex file. PM 94-28 THES-TP 94-0
Discriminating Z' from anomalous trilinear gauge coupling signatures in e+e- \to W+W- at ILC with polarized beams
New heavy neutral gauge bosons Z' are predicted by many models of physics
beyond the Standard Model. It is quite possible that Z's are heavy enough to
lie beyond the discovery reach of the CERN Large Hadron Collider LHC, in which
case only indirect signatures of Z' exchanges may emerge at future colliders,
through deviations of the measured cross sections from the Standard Model
predictions. We discuss in this context the foreseeable sensitivity to Z's of
W^\pm-pair production cross sections at the e^+e^- International Linear
Collider (ILC), especially as regards the potential of distinguishing
observable effects of the Z' from analogous ones due to competitor models with
anomalous trilinear gauge couplings (AGC) that can lead to the same or similar
new physics experimental signatures at the ILC. The sensitivity of the ILC for
probing the Z-Z' mixing and its capability to distinguish these two new physics
scenarios is substantially enhanced when the polarization of the initial beams
and the produced W^\pm bosons are considered. A model independent analysis of
the Z' effects in the process e^+e^- \to W^+W^- allows to differentiate the
full class of vector Z' models from those with anomalous trilinear gauge
couplings, with one notable exception: the sequential SM (SSM)-like models can
in this process not be distinguished from anomalous gauge couplings. Results of
model dependent analysis of a specific Z' are expressed in terms of discovery
and identification reaches on the Z-Z' mixing angle and the Z' mass.Comment: 33 pages; v2: version to appear in EPJ
Seesaw mechanism, baryon asymmetry and neutrinoless double beta decay
A simplified but very instructive analysis of the seesaw mechanism is here
performed. Assuming a nearly diagonal Dirac neutrino mass matrix, we study the
forms of the Majorana mass matrix of right-handed neutrinos, which reproduce
the effective mass matrix of left-handed neutrinos. As a further step, the
important effect of a non diagonal Dirac neutrino mass matrix is explored. The
corresponding implications for the baryogenesis via leptogenesis and for the
neutrinoless double beta decay are reviewed. We propose two distinct models
where the baryon asymmetry is enhanced.Comment: 21 pages, RevTex. Revise
Planck scale effects in neutrino physics
We study the phenomenology and cosmology of the Majoron (flavon) models of
three active and one inert neutrino paying special attention to the possible
(almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton
charge. Using Planck scale physics effects which provide the breaking of the
lepton charge, we show how in this picture one can incorporate the solutions to
some of the central issues in neutrino physics such as the solar and
atmospheric neutrino puzzles, dark matter and a 17 keV neutrino. These
gravitational effects induce tiny Majorana mass terms for neutrinos and
considerable masses for flavons. The cosmological demand for the sufficiently
fast decay of flavons implies a lower limit on the electron neutrino mass in
the range of 0.1-1 eV.Comment: 24 pages, 1 figure (not included but available upon request), LaTex,
IC/92/196, SISSA-140/92/EP, LMU-09/9
Lorentz and CPT Violation in Neutrinos
A general formalism is presented for violations of Lorentz and CPT symmetry
in the neutrino sector. The effective hamiltonian for neutrino propagation in
the presence of Lorentz and CPT violation is derived, and its properties are
studied. Possible definitive signals in existing and future
neutrino-oscillation experiments are discussed. Among the predictions are
direction-dependent effects, including neutrino-antineutrino mixing, sidereal
and annual variations, and compass asymmetries. Other consequences of Lorentz
and CPT violation involve unconventional energy dependences in oscillation
lengths and mixing angles. A variety of simple models both with and without
neutrino masses are developed to illustrate key physical effects. The
attainable sensitivities to coefficients for Lorentz violation in the
Standard-Model Extension are estimated for various types of experiments. Many
experiments have potential sensitivity to Planck-suppressed effects, comparable
to the best tests in other sectors. The lack of existing experimental
constraints, the wide range of available coefficient space, and the variety of
novel effects imply that some or perhaps even all of the existing data on
neutrino oscillations might be due to Lorentz and CPT violation.Comment: 25 pages REVTe
Limits on anomalous trilinear gauge boson couplings from WW, WZ and Wgamma production in pp-bar collisions at sqrt{s}=1.96 TeV
We present final searches of the anomalous gammaWW and ZWW trilinear gauge
boson couplings from WW and WZ production using lepton plus dijet final states
and a combination with results from Wgamma, WW, and WZ production with leptonic
final states. The analyzed data correspond to up to 8.6/fb of integrated
luminosity collected by the D0 detector in pp-bar collisions at sqrt{s}=1.96
TeV. We set the most stringent limits at a hadron collider to date assuming two
different relations between the anomalous coupling parameters
Delta\kappa_\gamma, lambda, and Delta g_1^Z for a cutoff energy scale Lambda=2
TeV. The combined 68% C.L. limits are -0.057<Delta\kappa_\gamma<0.154,
-0.015<lambda<0.028, and -0.008<Delta g_1^Z<0.054 for the LEP parameterization,
and -0.007<Delta\kappa<0.081 and -0.017<lambda<0.028 for the equal couplings
parameterization. We also present the most stringent limits of the W boson
magnetic dipole and electric quadrupole moments.Comment: 10 pages, 5 figures, submitted to PL
Search for charginos in e+e- interactions at sqrt(s) = 189 GeV
An update of the searches for charginos and gravitinos is presented, based on
a data sample corresponding to the 158 pb^{-1} recorded by the DELPHI detector
in 1998, at a centre-of-mass energy of 189 GeV. No evidence for a signal was
found. The lower mass limits are 4-5 GeV/c^2 higher than those obtained at a
centre-of-mass energy of 183 GeV. The (\mu,M_2) MSSM domain excluded by
combining the chargino searches with neutralino searches at the Z resonance
implies a limit on the mass of the lightest neutralino which, for a heavy
sneutrino, is constrained to be above 31.0 GeV/c^2 for tan(beta) \geq 1.Comment: 22 pages, 8 figure
- …