1,483 research outputs found

    Clinical, epidemiological, and microbiological characteristics of bacteremia caused by high-level gentamicin-resistant Enterococcus faecalis

    Get PDF
    Enterococcus spp bacteremia is associated with high mortality and the appearance of high-level gentamicin resistance (HLGR) created additional challenges for the treatment of these infections. We evaluated the epidemiological and clinical characteristics of patients with bacteremias caused by HLGR and non_HLGR Enterococcus faecalis isolates at a teaching hospital in the State of São Paulo, Brazil. Patients with bacteremia due to E. faecalis diagnosed between January 1999 and December 2003 were included in the study. We collected clinical, epidemiological, and microbiological data from medical records. Banked isolates were typed using pulsed-field gel electrophoresis. We identified 145 cases of E. faecalis bacteremia: 66 (45.5%) were caused by HLGR isolates and 79 (54.5%) by non_HLGR. In the univariate analysis, patients with HLGR infection were older, had higher rates of bladder catheterization, and more often had treatment with cephalosporin, quinolone, and/or carbapenem compared with patients with non_HLGR infection (P < 0.05). Multivariate analysis indicated that older age, hematological malignancy, and previous use of vancomycin were independently associated with HLGR (P < 0.05). Mortality rates were not significantly different among patients with HLGR (50%) and non_HLGR (43%) infections (P = 0.40). Of the 32 genotyped isolates, 16 were distributed into 6 main electrophoresis patterns and 16 others had distinct patterns. E. faecalis bacteremia is associated with high mortality and is frequently caused by HLGR isolates at this teaching hospital. The variability among genotyped isolates suggests that endogenous infections, rather than patient-to-patient transmission of E. faecalis, are more common at this institution.89089

    Repeated exposure of adolescent rats to oral methylphenidate does not induce behavioral sensitization or cross-sensitization to nicotine

    Get PDF
    Several lines of evidence indicate that the use of stimulant drugs, including methylphenidate (MPD), increases tobacco smoking. This has raised concerns that MPD use during adolescence could facilitate nicotine abuse. Preclinical studies have shown that repeated treatment with an addictive drug produces sensitization to that drug and usually cross-sensitization to other drugs. Behavioral sensitization has been implicated in the development of drug addiction. We examined whether repeated oral MPD administration during adolescence could induce behavioral sensitization to MPD and long-lasting cross-sensitization to nicotine. Adolescent male Wistar rats were treated orally with 10 mg/kg MPD or saline (SAL) from postnatal day (PND) 27 to 33. To evaluate behavioral sensitization to MPD in adolescent rats (PND 39), the SAL pretreated group was subdivided into two groups that received intragastric SAL (1.0 mL/kg) or MPD (10 mg/kg); MPD pretreated rats received MPD (10 mg/kg). Cross-sensitization was evaluated on PND 39 or PND 70 (adulthood). To this end, SAL- and MPD-pretreated groups received subcutaneous injections of SAL (1.0 mL/kg) or nicotine (0.4 mg/kg). All groups had 8 animals. Immediately after injections, locomotor activity was determined. The locomotor response to MPD challenge of MPD-pretreated rats was not significantly different from that of the SAL-pretreated group. Moreover, the locomotor response of MPD-pretreated rats to nicotine challenge was not significantly different from that of the SAL-pretreated group. This lack of sensitization and cross-sensitization suggests that MPD treatment during adolescence does not induce short- or long-term neuroadaptation in rats that could increase sensitivity to MPD or nicotine

    The lateritic ore deposits of Brazil

    Get PDF
    Au Brésil, les mécanismes d'altération supergène ont conduit à la formation d'un épais recouvrement latéritique sur environ 65 % de la surface totale; dans des conditions particulières, l'accumulation de certains métaux dans ce manteau peut atteindre le stade économique. La latéritisation des diverses roches mères, tout à fait spécifiques de chaque type de gisement, est intervenue pour l'essentiel au Tertiaire, pendant des épisodes de stabilité tectonique auxquels correspondent des surfaces d'aplanissement généralisées. Le rôle des facteurs lithologiques, climatiques et morpho-tectoniques dans le mécanisme de genèse des gisements latéritiques est discut

    Design of a nanostructured mucoadhesive system containing curcumin for buccal application : from physicochemical to biological aspects

    Get PDF
    Mucoadhesive nanostructured systems comprising poloxamer 407 and Carbopol 974P® have already demonstrated good mucoadhesion, as well as improved mechanical and rheological properties. Curcumin displays excellent biological activity, mainly in oral squamous cancer; however, its physicochemical characteristics hinder its application. Therefore, the aim of this study was to develop nanostructured formulations containing curcumin for oral cancer therapy. The photophysical interactions between curcumin and the formulations were elucidated by incorporation kinetics and location studies. They revealed that the drug was quickly incorporated and located in the hydrophobic portion of nanometer-sized polymeric micelles. Moreover, the systems displayed plastic behavior with rheopexy characteristics at 37 °C, viscoelastic properties and a gelation temperature of 36 °C, which ensures increased retention after application in the oral cavity. The mucoadhesion results confirmed the previous findings with the nanostructured systems showing a residence time of 20 min in porcine oral mucosa under flow system conditions. Curcumin was released after 8 h and could permeate through the porcine oral mucosa. Cytotoxicity testing revealed that the formulations were selective to cancer cells over healthy cells. Therefore, these systems could improve the physicochemical characteristics of curcumin by providing improved release and permeation, while selectivity targeting cancer cells

    Lipase mediated enzymatic kinetic resolution of phenylethyl halohydrins acetates: A case of study and rationalization

    Get PDF
    Racemic phenylethyl halohydrins acetates containing several groups attached to the aromatic ring were resolved via hydrolysis reaction in the presence of lipase B from Candida antarctica (Novozym\uae 435). In all cases, the kinetic resolution was highly selective (E &gt; 200) leading to the corresponding (S)-\u3b2-halohydrin with ee &gt; 99 %. However, the time required for an ideal 50 % conversion ranged from 15 min for 2,4-dichlorophenyl chlorohydrin acetate to 216 h for 2-chlorophenyl bromohydrin acetate. Six chlorohydrins and five bromohydrins were evaluated, the latter being less reactive. For the \u3b2-brominated substrates, steric hindrance on the aromatic ring played a crucial role, which was not observed for the \u3b2-chlorinated derivatives. To shed light on the different reaction rates, docking studies were carried out with all the substrates using MD simulations. The computational data obtained for the \u3b2-brominated substrates, based on the parameters analysed such as NAC (near attack conformation), distance between Ser-O and carbonyl-C and oxyanion site stabilization were in agreement with the experimental results. On the other hand, the data obtained for \u3b2-chlorinated substrates suggested that physical aspects such as high hydrophobicity or induced change in the conformation of the enzymatic active site are more relevant aspects when compared to steric hindrance effects

    Phase diagram of a probabilistic cellular automaton with three-site interactions

    Full text link
    We study a (1+1) dimensional probabilistic cellular automaton that is closely related to the Domany-Kinzel (DKCA), but in which the update of a given site depends on the state of {\it three} sites at the previous time step. Thus, compared with the DKCA, there is an additional parameter, p3p_3, representing the probability for a site to be active at time tt, given that its nearest neighbors and itself were active at time t−1t-1. We study phase transitions and critical behavior for the activity {\it and} for damage spreading, using one- and two-site mean-field approximations, and simulations, for p3=0p_3=0 and p3=1p_3=1. We find evidence for a line of tricritical points in the (p1,p2,p3p_1, p_2, p_3) parameter space, obtained using a mean-field approximation at pair level. To construct the phase diagram in simulations we employ the growth-exponent method in an interface representation. For p3=0p_3 =0, the phase diagram is similar to the DKCA, but the damage spreading transition exhibits a reentrant phase. For p3=1p_3=1, the growth-exponent method reproduces the two absorbing states, first and second-order phase transitions, bicritical point, and damage spreading transition recently identified by Bagnoli {\it et al.} [Phys. Rev. E{\bf 63}, 046116 (2001)].Comment: 15 pages, 7 figures, submited to PR

    Structure and Mechanism of Dimer-Monomer Transition of a Plant Poly(A)-Binding Protein upon RNA Interaction: Insights into Its Poly(A) Tail Assembly

    Get PDF
    Poly(A)-binding proteins (PABPs) play crucial roles in mRNA biogenesis, stability, transport and translational control in most eukaryotic cells. Although animal PABPs are well-studied proteins, the biological role, three-dimensional structure and RNA-binding mode of plant PABPs remain largely uncharacterized. Here, we report the structural features and RNA-binding mode of a Citrus sinensis PABP (CsPABPN1). CsPABPN1 has a domain architecture of nuclear PABPs (PABPNs) with a single RNA recognition motif (RRM) flanked by an acidic N-terminus and a GRPF-rich C-terminus. The RRM domain of CsPABPN1 displays virtually the same three-dimensional structure and poly(A)-binding mode of animal PABPNs. However, while the CsPABPN1 RRM domain specifically binds poly(A), the full-length protein also binds poly(U). CsPABPN1 localizes to the nucleus of plant cells and undergoes a dimer–monomer transition upon poly(A) interaction. We show that poly(A) binding by CsPABPN1 begins with the recognition of the RNA-binding sites RNP1 and RNP2, followed by interactions with residues of the β2 strands, which stabilize the dimer, thus leading to dimer dissociation. Like human PABPN1, CsPABPN1 also seems to form filaments in the presence of poly(A). Based on these data, we propose a structural model in which contiguous CsPABPN1 RRM monomers wrap around the RNA molecule creating a superhelical structure that could not only shield the poly(A) tail but also serve as a scaffold for the assembly of additional mRNA processing factors
    • …
    corecore