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ABSTRACT

In this paper, we propose a novel framework called Deep-
MLE, which gives a solution to the single-snapshot Direction
Of Arrival (DOA) estimation problem, up to 4 distinct tar-
gets, using a radar equipped with a Minimum Redundancy an-
tenna Array (MRA). This framework works by fusing a Deep
Learning (DL) technique - 1D Residual Neural Network (1D
ResNet) - with a classical DOA algorithm - Maximum Like-
lihood Estimation (MLE). By combining two very different
approaches, we can address some of their limitations, such
as the computational complexity of MLE. On the other hand,
our proposed Deep-MLE uses MLE to correct, to some de-
gree, the estimations made by the Neural Network (NN). The
results from our framework are promising as it seems to be
a viable solution to the DOA estimation problem, having a
better performance than models using pure MLE or NN.

Index Terms— Direction of Arrival, Maximum Likeli-
hood Estimation, Residual Neural Network, Single Snapshot

1. INTRODUCTION

Estimating the Direction of Arrival (DOA) has been a chal-
lenging problem in different fields, and there are several de-
veloped ways to approach it with various algorithms and tech-
niques [1, 2], being signal processing a fundamental part of
most of them. Although we have used radar equations and
configurations, our work can potentially be expanded to other
areas, such as sonars and wireless communication signals.

The employment of Deep Learning (DL) in the signal pro-
cessing world has already yielded some interesting results,
such as reducing noise in radar images [3, 4], sensor fusion
[5], among others [6, 7]. Other researchers have developed
DOA estimation solutions using Deep Learning. The works
by [8, 9] fed snapshots into several Convolutional Neural Net-
works, in parallel, to create a MUSIC-like spectrum. On the
other hand, the researches of [10, 11] utilized Fully Con-
nected Neural Networks with a single-snapshot and Uniform
Linear antenna Array (ULA) to estimate DOAs.

For our work, we have explored the multiple DOA prob-
lem using a single snapshot and a Minimum Redundancy an-
tenna Array (MRA). Our motivation to chose this scenario
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Fig. 1: An illustration of all required steps of Deep-MLE.

was driven by the trend towards autonomous systems. Often,
just a single snapshot is available for automotive usage due to
the maximum latency requirements [12]. At the same time,
MRA can amplify the resolution without adding more anten-
nas to the array [13]. According to Hacker and Yang [14],
the Maximum Likelihood Estimation (MLE) algorithm is the
most reliable technique to estimate the DOA when using a
single snapshot. Therefore, we have used this algorithm both
as a comparison and within our proposed framework. In addi-
tion, the traditional MLE [15] was used, rather than a different
MLE algorithm [16, 17] that could have another trade-off be-
tween performance and complexity. MLE works by testing all
possible angle combinations and finding the one that gives the
least amount of residual error for a previously known antenna
model [18]. However, the computational complexity of MLE
grows exponentially with the number of sources in the scene
[19], making it too costly for many real-time applications.

In this paper, we propose a novel way to solve the DOA
estimation problem by fusing a 1D Residual Neural Network
(1D ResNet) [20] with the classical MLE algorithm and cre-
ating a framework called Deep-MLE. Fig. 1 shows an illus-
tration our proposed framework. Deep-MLE receives a sin-
gle snapshot provided by an eight antenna MRA and esti-
mates the unknown target angles. Firstly, the snapshot passes
through the 1D ResNet. From the output of the neural net-
work, the pre-selected angles are chosen. Sequentiality, only
these selected angles are tested and picked by the MLE algo-
rithm, which drastically reduces its computational complexity
by up to ten thousand times less than the required by the tra-
ditional MLE.

The results of our simulations show that Deep-MLE is a
viable solution to solve the DOA problem, taking advantage
of both methods as MLE potentially corrects the estimated
angles that ResNet would choose.
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2. SIGNAL MODEL

Considering M antennas, with the minimum distance be-
tween two antennas being d = λ/2, where λ is the wave-
length of the transmitting signal. We can construct an array
containing all the distances between antennas as D(m) =
[0, 1, 4, 6, 13, 14, 17, 19]d, where m = 1, ...,M . Further-
more, consider that all N sources, where 0 ≤ N ≤ M − 1,
are in the far-field. The received snapshot, x ∈ CM , follows
the expression:

x = A(θ) · s+ η , (1)

where s ∈ CN is the sources’ signal, η ∈ CM is the added
Gaussian noise, and A(θ) ∈ CMxN is the steering matrix.
A(θ) is a function of the angles θ = θ1, ..., θN . The steering
matrix A(θ) can be represented as N concatenated steering
vectors ā ∈ CM : A(θ) = [ā1(θ1), · · · , āN (θN )], and each
steering vector ā can be expressed as:

āi(θi) = [αie
j2πλ−1D(1)θi , · · · , αie

j2πλ−1D(M)θi ]T , (2)

in which i = 1, ..., N , 0 < αi ≤ 1 is the normalized ampli-
tude of the source si, and T is the transpose operation.

The Maximum Likelihood Estimation (MLE) [15] algo-
rithm performs well for estimating the DOAs [14]. The MLE
algorithm works by trying all possible steering matrices A(θ)
containing every possible angles combination that satisfies eq.
1. In other words, MLE searches for the angle combination
θ̃ that produces the least amount of residual error (difference
between estimated and actual steering vectors) for a received
snapshot x:

θ̃ = argmin
θ

||x− A(θ) · (A+(θ) · x)|| , (3)

in which θ̃ = θ̃1, ..., θ̃N are the estimated angles, and A+(θ)
is the pseudo-inverse (Moore-Penrose pseudo-inverse) of the
matrix A(θ). The fact that multiple pseudo-inversions need
to be computed is what makes MLE computational intensive
[19].

The number of times that MLE needs to perform the eq.
3, and therefore a pseudo-inversion, given by a binomial co-
efficient, as it explores all possible combinations of angles, is(
G
N

)
; where G is the number of angles MLE has to search, and

N is the number of sources.
Since the most computationally heavy operation for MLE

is the pseudo-inverse, its operational complexity depends on
it. According to Courrieu [21], the Moore-Penrose pseudo-
inverse relies on the Singular Value Decomposition (SVD)
matrix operation and has a complexity of O(M3). Since MLE
computes

(
G
N

)
times a matrix pseudo-inverse, the operational

complexity for MLE can be estimated as: OMLE(M
3
(
G
N

)
).

Using eight antennas (M = 8) and a Field Of View (FOV)
of 180 degrees with a resolution of 1 degree (G = 181), we

Table 1: Comparison between different NNs.

NN Operational Number of Accuracy for 2 angles
Type Complexity Layers with SNR = 30 dB*

FCNN 3.3× 106 8 FC Layers 82.29 %
CNN 2.5× 107 4 2D Conv. + 2 FC Layers 78.7 %

2D ResNet 5.1× 106 12 2D Conv. + 2 FC Layers 90.1 %
1D ResNet 1.68× 106 12 1D Conv. + 2 FC Layers 90.1 %

*Trained and evaluated with a reduced dataset.

can calculate the operational complexity for different cases by
varying the number of DOAs. The complexity for 1D MLE
(one target) is 9.2 × 104, 2D MLE is 8.3 × 106, 3D MLE is
4.9× 108, and 4D MLE is 2.2× 1010. As a consequence, the
classical MLE is impracticable for many applications.

The computational complexity of neural networks depend
on the number and type of its layers. For a convolutional
layer, the complexity depends on the number of filters (or
channels) of its input and output (Cin and Cout respectively),
the size of the layer’s input Iin, the size of the kernel filter
F , and the number of strides S done during the convolution.
On the other hand, the operational complexity of a fully con-
nected layer just depends on the size of the input and output
(Iin and Iout respectively). Therefore, the computation com-
plexity for one convolutional layer is Oconv(CinCout

Iin
S F ),

and for one fully connected layer is Ofc(IinIout).
During the development of this work, we have tried var-

ious NN architectures. Using the Oconv and Ofc equations
to calculate the operational complexity of each layer, we can
estimate the operational complexity of these neural networks.
As seen in Table 1, we chose the 1D ResNet (architecture can
be seen in Fig. 2), as it is the one with the least computational
complexity while retaining one of the best accuracies. An
advantage of using neural networks is the fact that their op-
erational complexity does not grow depending on the number
of targets.

3. DEEP-MLE - DATA AND ARCHITECTURE

In this paper, we propose a novel framework, called Deep-
MLE, that fuses deep learning (1D ResNet) and a classical
algorithm (MLE) for estimating the direction of arrival. By
doing so, we can generally achieve better performance than
models that use only DL or MLE.

When the received snapshot enters our Deep-MLE, the
first step is a fast pre-processing before heading to the neu-
ral network. Unlike the original ResNet proposed by He et
al. [20], our 1D ResNet requires a vector (1D) as an input,
not a matrix (2D). In addition, since most machine learning
methods do not utilize complex numbers directly, the received
snapshot x needs to be modified. For that, our neural net-
work is fed by a vector containing both the real and imagi-
nary parts of x. The input of our ResNet χ ∈ R2M is given
as: χi = Re{xi} and χi+M = Im{xi}, which means that the
input χ has a size of 2M , with both the real and imaginary
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Fig. 2: The proposed 1D ResNet architecture inside our
Deep-MLE framework

parts of the received snapshot x concatenated together into a
single vector.

The output layer of the neural network is a fully connected
layer. The number of neurons in this last layer depends on
the used resolution and FOV. The output layer will contain
(FOV/resolution)+1 neurons. For example, if FOV = 180◦

and the used resolution is 1◦, the NN will have 181 neurons
in its output. This means that each output neuron represents
a possible angle. The output value of these neurons can vary
between 0 and 1. They represent the neural network’s confi-
dence that a given target exists (or does not) at that particu-
lar angle. The output y from ResNet represents its reliability
distribution (confidence) at all possible angles within a given
FOV and resolution.

Further, the output y from the 1D ResNet passes through
the post-processing step, which selects the 2N most probable
angles θ̂ = θ̂1, ..., θ̂2N . Note that the number of selected an-
gles varies with the number of incoming angles N . For exam-
ple, when solving the DOA for 3 targets, the post-processing
step will select 6 probable angles from the output y. The 2N
was chosen empirically, as it produced the best results.

Finally, the last step is the MLE algorithm which receives
2N angles (θ̂) and computes

(
2N
N

)
combinations, searching

for the one that results in the least amount of residual error,
thus obtaining the N estimated angles (θ̃) in the output.

Another way to demonstrate the integration between
ResNet and MLE is through Fig. 3. In this example, we have
4 distinct targets. Here, it is possible to observe the neural
network’s output y. The strongest peaks, marked with a red
asterisk, are the ones selected by the post-processing step
θ̂ = θ̂1, ..., θ̂8. They represent the angles where ResNet is
most confident that a target exists. The output from Deep-
MLE is marked with blue circles, and it represents the esti-
mated angles by our framework θ̃ = θ̃1, ..., θ̃4. The dashed
vertical line represents the actual angles θ = θ1, ..., θ4. Note
how the most strong peak (at 50◦) was not selected by Deep-
MLE. This means that the MLE step corrected the ResNet
output. In other words, in this example, Deep-MLE correctly
estimated the angles, using a fraction of the computational
requirement of a complete MLE, by correcting a prediction
from the neural network.
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Fig. 3: ResNet’s output, post-processing, and MLE steps of
our Deep-MLE framework.

The operational complexity of our Deep-MLE is the com-
bination of the complexities between 1D ResNet and MLE,
where the number of angles that the MLE step searches is
G = 2N . Therefore, the complexity of our Deep-MLE is
given by: OdMLE(1.68×106+M3

(
2N
N

)
), hence, the compu-

tational complexity of 4 targets drops from 2.2× 1010 (MLE)
to 1.72 × 106 (Deep-MLE). This is more than ten thousand
times less complex.

4. EVALUATION AND RESULTS

For evaluating our work, we have utilized a few metrics. Root
Mean Square Error (RMSE), accuracy (percentage of cor-
rectly estimated DOAs), and outliers (percentage of incor-
rectly estimated DOAs by more than 5 degrees) were the met-
rics utilized by us to evaluate our results.

As many researchers before [8, 11], we have used Root
Mean Square Error (RMSE) as a metric. The RMSE used by
us is given by:

RMSE =
1

L

L∑
l=1

√√√√ 1

K ×N

K∑
k=1

N∑
n=1

(θ̃n,k,l − θn,k)2 , (4)

where K is the number of samples, N is the number of DOAs,
L is the number of Monte-Carlos trials, θ̃n,k,l is the estimated
angle and θn,k is the actual angle.

Although RMSE is a reliable metric, it does not show ev-
erything about a given scenario. For example, a high RMSE
can be due to a single very incorrectly estimated angle. In
reality, it does not matter if an estimated angle is off by 10 or
50 degrees since both answers are equally wrong. Therefore,
we have used two other metrics as well. What we call ac-
curacy is the percentage of correctly estimated angles within
the resolution. If the resolution of 1◦ is used, anything below
0.5◦ should be considered a correct estimation. What we call
outliers is the percentage of incorrectly estimated angles that
are off by more than 5◦.

Before our experiments, we have trained our 1D ResNet
using 50 million of generated data points, each data point con-
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Fig. 4: RMSE vs. SNR for MLE, ResNet, and our proposed
Deep-MLE between 1 and 4 sources.

taining between 0 and 5 sources, SNR (Signal-to-Noise Ratio)
ranging between 0 and 30 dB, and normalized signal ampli-
tude varying between 0.5 and 1. Although 50 million data
points might seem like a lot of data, they represent an insignif-
icantly small number of every possible combination between
targets, SNR, and amplitude. Therefore, the neural network
needed to learn how to generalize the training data.

Our experiment results can be seen in Fig. 4. We can ob-
serve that our Deep-MLE tends to follow the ResNet perfor-
mance for low SNR levels while following the performance
of MLE for high SNR situations. In some cases, our frame-
work can outperform both of the other techniques. For one
source, Deep-MLE was the best one for low SNR and had a
similar performance to both MLE and ResNet for high SNR.
For two sources, Deep-MLE also had the best performance
for noisy situations, and it performed slightly worse than the
others when in a low noise environment. For three sources,
our framework always performed best. And for four targets,
it closely followed the performance of ResNet for low SNR
and then followed MLE for high SNR.

We can also analyze the results of Fig. 4 by taking the
average RMSE of all experiments - for low and high noise -
and calculating the difference between them. For low SNR,
the difference of averages RMSE between Deep-MLE and
MLE is −3.4◦, while between Deep-MLE and 1D ResNet is
−0.3◦. For high SNR, the difference of averages RMSE be-
tween Deep-MLE and MLE is −0.06◦, while between Deep-
MLE and 1D ResNet is −0.2◦. Hence, in general, Deep-MLE
has a better performance than the tested models that use only
MLE or 1D ResNet.

Sequentially, we have repeated the same experiment but
changed the metrics for accuracy and outliers, as seen in Fig.
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Fig. 5: Accuracy and Outliers vs. SNR for MLE, ResNet, and
our proposed Deep-MLE between 1 and 4 sources.

5. The solid line represents the accuracy within resolution.
In other words, the percentage of correctly estimated angles
within the resolution. The dotted line represents the percent-
age of targets that were incorrectly estimated by more than
5◦. The same trends observed in Fig. 4 can also be seen in
Fig. 5. It is important to note that, for most of these scenar-
ios, we can observe that Deep-MLE has the least number of
outliers (thus better RMSE results), even though 1D ResNet
can be more accurate for most situations.

5. CONCLUSION

In this paper, we have proposed a novel approach to solve
the DOA estimation problem by fusing the classical MLE
approach with a deep-learning-based approach. Using a 1D
Residual Neural Network, we have got a model that has a
low computational complexity compared to the classical MLE
while providing more accurate results than pure neural net-
work models. We have experimented with various SNR lev-
els, and different numbers of sources. The results of our simu-
lations showed that our framework generally performs better
than MLE or 1D ResNet. In short, our model is robust to
changes in noise, being a viable solution for the DOA esti-
mation problem. However, this framework also comes with
disadvantages. The training part is very computational com-
plex and requires a fast computer. Retraining is also necessary
if there are changes to the model, such as changes in the an-
tennas’ position. In addition, it is also necessary to store the
trained neural network.

For future work, we would like to test Deep-MLE using
measured data instead of generated data.

3676



6. REFERENCES

[1] A. G. Raj and J. H. McClellan, “Super-resolution DOA
Estimation for Arbitrary Array Geometries Using a Sin-
gle Noisy Snapshot,” IEEE International Conference on
Acoustics, Speech and Signal Processing, vol. 2019-
May, no. 1, pp. 4145–4149, 2019.

[2] E. Aboutanios, A. Hassanien, M. G. Amin, and
A. M. Zoubir, “Fast Iterative Interpolated Beamforming
for Accurate Single-Snapshot DOA Estimation,” IEEE
Geoscience and Remote Sensing Letters, vol. 14, no. 4,
pp. 574–578, 2017.

[3] M. L. Lima de Oliveira and M. J. G. Bekooij, “Deep
convolutional autoencoder applied for noise reduction in
range-Doppler maps of FMCW radars,” IEEE Interna-
tional Radar Conference (RADAR 2020), pp. 630–635,
2020.

[4] A. Fuchs, J. Rock, M. Toth, P. Meissner, and
F. Pernkopf, “Complex-valued Convolutional Neural
Networks for Enhanced Radar Signal Denoising and In-
terference Mitigation,” in IEEE Radar Conference, no.
17774193. IEEE, 2021.

[5] K. Aziz, E. De Greef, M. Rykunov, A. Bourdoux,
and H. Sahli, “Radar-camera Fusion for Road Target
Classification,” IEEE International Radar Conference
(RADAR 2020), vol. 2020-Septe, 2020.

[6] Z. Zhang, Z. Tian, M. Zhou, and S. Member, “Latern :
Dynamic Continuous Hand Gesture Recognition Using
FMCW Radar Sensor,” IEEE Sensors Journal, vol. 18,
no. 8, pp. 3278–3289, 2018.

[7] M. L. Lima De Oliveira and M. J. G. Bekooij, “Gen-
erating Synthetic Short-Range FMCW Range-Doppler
Maps Using Generative Adversarial Networks and Deep
Convolutional Autoencoders,” IEEE Radar Conference
(RadarConf20), pp. 1–6, 2020.

[8] A. M. Elbir, “DeepMUSIC: Multiple Signal Classifica-
tion via Deep Learning,” IEEE Sensors Letters, vol. 4,
no. 4, 2020.

[9] C. Liu, W. Feng, H. Li, and H. Zhu, “Single Snap-
shot DOA Estimation Based on Spatial Smoothing MU-
SIC and CNN,” IEEE International Conference on Sig-
nal Processing, Communications and Computing, no. 3,
2021.

[10] J. Fuchs, R. Weigel, and M. Gardill, “Single-snapshot
direction-of-arrival estimation of multiple targets using
a multi-layer perceptron,” 2019 IEEE MTT-S Interna-
tional Conference on Microwaves for Intelligent Mobil-
ity, ICMIM 2019, pp. 0–3, 2019.

[11] O. Bialer, N. Garnett, and T. Tirer, “Performance Ad-
vantages of Deep Neural Networks for Angle of Ar-
rival Estimation,” in IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2019, pp. 3907–3911.

[12] M. Schoor and B. Yang, “High-resolution angle estima-
tion for an automotive FMCW radar sensor,” Proceed-
ings International Radar Symposium (IRS), 2007.

[13] Z. Szalay and L. Nagy, “ULA and MRA beamforming
using conventional and particle filter based algorithms,”
International Conference on Applied Electromagnetics
and Communications (ICECom), pp. 8–11, 2013.
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