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Abstract—In this paper, we discuss the usage of Residual
Neural Networks (ResNets) for calculating the Direction Of
Arrival (DOA) of MIMO radars and the estimation of the
number of targets, using Minimum Redundancy Array (MRA).
In addition, we are considering only the case of one snapshot
at a time. This means that most techniques would deliver a
poor estimation performance, whereas the Maximum Likelihood
Estimation (MLE) algorithm delivers decent performance at a
high computational cost.

ResNet appears to be a viable alternative solution for this
problem, being able to outperform MLE in some cases while
having a less computational cost for scenarios with at least two
different targets.

Index Terms—Direction of Arrival, Maximum Likelihood Es-
timation, Number of Source Estimator, Residual Neural Network

I. INTRODUCTION

Radars are versatile and have been used already for sev-
eral decades. However, in recent years, they have received
additional attention because of the new trend towards au-
tonomous systems - through the development of reliable, low-
cost mmWave radars - and driven by Deep Learning (DL) re-
search. The applications of Frequency-Modulated Continuous-
Wave (FMCW) radars with Deep Neural Networks (DNN)
become more diversified every year. Reducing noise on Range-
Doppler maps [1], generating synthetic radar data [2], and
object classification in radars [3] are a few examples of this.

Estimating the Direction Of Arrival (DOA) is a well-known
problem with many ways to approach it. For this work, we
have considered the problem of multiple DOAs with a single
snapshot using Minimum Redundancy antenna Array (MRA).
Since most of our work was done with MRA, most of our
comparisons used Maximum Likelihood Estimation (MLE),
as algorithms like MUSIC and ESPRIT would not perform
well with this type of scenario [4]. At the end of our work,
to facilitate a comparison with the results of other works, we
have also considered a Uniform Linear antenna Array (ULA).

The Maximum Likelihood Estimation (MLE) [4]–[6] is a
reliable algorithm for estimating the DOA. It works by trying
all possible angle combinations that would satisfy the provided
signal model and choosing the best angle combination that
minimizes the residual error of the arriving snapshot. The
limitations of MLE lie in its exponentially increasing computa-
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Fig. 1: A simplified diagram of our ResNet model.

tional complexity for multiple sources. Furthermore, according
to Häcker and Yang [5], MLE is the most reliable technique
for estimating the DOA when using a single snapshot.

More recently, with the successful introduction of Deep
Neural Networks (DNN) techniques into the radar domain,
some researchers have tried applying Neural Networks (NN)
for estimating the DOA. In the researches of both Bialer et.
al. [7] and Fuchs et. al. [8], deep Fully Connected Neural
Networks (FCNN) were used for estimating the DOA using a
single snapshot. Both used a neural network with regression to
solve the problem. Bialer et. al. [7] used Root Mean Squared
Error (RMSE) as a custom loss function to calculate the error
for the regression and could solve the DOA problem up to
four angles, while Fuchs et. al. [8] used both the average and
distance between two targets as a way to calculate the error for
the regression and solve the DOA problem for two sources.
Another work, by Elbir [9], used regression, several snapshots,
and various Convolutional Neural Networks (CNN) in parallel
to achieve a MUSIC-like spectrum and solve the DOA problem
for up to six distinct angles.

In this paper, we propose a novel ResNet application to
estimate single-snapshot DOAs and to estimate the number of
targets. Fig. 1 shows a simplified diagram of our design. Un-
like previous authors, our method relies on classification rather
than regression. In addition, unlike previous techniques, we do
not always assume that the number of sources is previously
known before estimating the DOA. Our experiments suggest
that ResNet achieves at least similar performance to MLE for
both MRA and ULA, outperforming it in some scenarios.

II. SIGNAL MODEL

Consider M antennas uniformly separated (ULA), with the
distance between two antennas being d. Moreover, considering
that all N sources are far-field, respecting the condition of
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0 ≤ N ≤ M − 1. The received snapshot x ∈ CM follows the
expression:

x = A(θ) · s+ η , (1)

where s ∈ CN is the signal emitted by the sources, η ∈ CM is
the added Gaussian noise, and A(θ) ∈ CM×N is the steering
matrix (also known as the beamforming matrix). The steering
matrix is a function of the angles of arrival θ = θ1, ..., θN ,
and it is expressed as:

A(θ) =

 ej2πλ
−1dθ1 ... ej2πλ

−1dθN

... ...

ej2πλ
−1Mdθ1 ... ej2πλ

−1MdθN

 , (2)

in which λ is the radar’s wavelength, d = λ/2, and the posi-
tions of each antenna of the array vary following d, 2d, ...,Md.

A. Maximum Likelihood Estimation

The Maximum Likelihood Estimation (MLE) algorithm is
commonly used for estimating the DOA when using a single
snapshot, having a good performance at it [5]. MLE tries all
possible angle combinations to find the most likely answer for
the problem - the angle combination that provides the least
amount of residual error.

Consider ε(θ) ∈ CM as the residual error vector and Ã(θ)
as a certain estimated steering matrix. In short, the MLE
algorithm attempts to minimize its residual error by trying
different matrices Ã(θ) containing different combinations of
angles:

ε(θ) = x− Ã(θ) · (Ã+
(θ) · x) , (3)

where Ã
+
(θ) is the pseudo-inverse matrix of Ã(θ). The

estimated DOAs θ̃ = θ̃1, ..., θ̃N can be calculated by the
minimal residual error:

θ̃ = argmin
θ

||ε(θ)||2 , (4)

in which εmin = min{ε(θ)} is the minimal residual noise
obtained after repeating eq. 3 several times and finding its
minimal value.

The number of times the MLE algorithm repeats eq. 3
depends on the size of the search grid. For example, using
a Field of View (FOV) of 180 degrees, a resolution of
1 degree, 8 antennas, and 3 targets, the number of times
the MLE algorithm will need to pseudo-invert the matrix
Ã(θ̃) ∈ C8×3 is nearly a million times. Hence, this algorithm
is very computationally intensive when estimating the DOA
for more than 2 sources.

The MLE algorithm can also be used for calculating the
estimated number of sources Ñ (shown in Algorithm 1) if
the scene noise η is previously known. For this, the algorithm
first assumes that there is only one angle, Ñ = 1. The 1D
MLE finds the angle that produces the least amount of residual
error. If the difference between the residual error ε1min and the
known scene noise η is too large, then there is (probably) more

than 1 source in the scene. Sequentially, the algorithm assumes
that two angles of arrival exist and calculates these angles and
residual error by running a 2D MLE. If the difference between
them is still too big, it assumes there is still another source.
The same happens for 3D MLE. If there are more than 3
targets, the DOAs are not calculated due to the computational
intensity. If ||η − εmin|| < c1, then we can consider that η ≈
εmin, where c1 is small and found empirically.

Algorithm 1 Number of Sources Estimator using MLE

1: Ñ = 1
2: [ε1min; θ̃1] = MLE1D(x)
3: if ||η − ε1min|| > c1, then
4: Ñ = 2
5: [ε2min; θ̃1, θ̃2] = MLE2D(x)
6: if ||η − ε2min|| > c1, then
7: Ñ = 3
8: [ε3min; θ̃1, θ̃2, θ̃3] = MLE3D(x)
9: if ||η − ε3min|| > c1, then

10: Ñ > 3
11: end if
12: end if
13: end if

III. RESNET - DATA AND ARCHITECTURE

In this paper, we propose the usage of a Residual Network
(ResNet) for estimating both the DOA and the number of
sources. Therefore, it is essential to understand how this
technique works and how it processes data.

A. ResNet Data

ResNet was first introduced as an image recognition tech-
nique [10]. Since images are 3D matrices (the third dimension
being used for colors), we have used something similar as
the input for our network, adapting the received snapshot x.
As in the study by Elbir [9], we have used the covariance
matrix R ∈ CM×M as the input to our NN. For our case,
since the complete covariance matrix is not available for real
applications, we can approximate the covariance matrix as:

R = x · xH , (5)

where xH is the conjugate transpose (or Hermitian transpose)
of the snapshot x.

To obtain the normalized NN’s input X ∈ RM×M×2, we
must separate the real and imaginary parts of R, store them
separately into the third dimension of the 3D matrix X and
then normalize it:

Xi,j,1 = Re{Ri,j}/c2
Xi,j,2 = Im{Ri,j}/c2

, (6)

where i = 1, ...,M and j = 1, ...,M . The constant c2 is used
to normalize the input. This value was obtained empirically as
a number that would always keep all values of X between -1
and 1.
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Fig. 2: The architecture of our proposed ResNet applied to the DOA problem.

Our output layer is a fully connected dense layer, where
each neuron represents one possible angle, and the value of
this neuron represents the probability that a source exists at
that possible angle. Unlike previous papers [7], [8], we do not
perform a regression but a classification. The advantage of
doing this is that we do not need to alter the neural network
to produce results for different numbers of sources N . One
disadvantage is the need for post-processing to analyze the
probability distribution coming out of the neural network.
Another disadvantage is the need for retraining if either the
FOV or resolution changes. In our experiments, the advan-
tages outweighed the disadvantages, and our testings using
classification were superior to the test models using regression.
Since each neuron is related to a possible angle, the number
of neurons in the output layer depends on the desired FOV
and resolution. Therefore, the output of the NN is a vector y
containing (FOV/resolution) + 1 elements. Each element of
this output y corresponds to a single neuron output. In this
research, we have used 181 neurons for MRA (FOV of 180◦

and a resolution of 1◦) and 201 neurons for ULA (FOV of
20◦ and a resolution of 0.1◦).

B. ResNet Architecture

Our ResNet was inspired as a reduced and adapted version
of the original network proposed by He et. al. [10]. Our
version has 1 identity block, 3 convolution blocks, and 2 fully
connected layers. Through our testing, we have found this
light architecture to produce the fewest of errors (difference
between the estimated and actual angle of arrival). Fig. 2
shows our proposed neural network, as we used it for MRA,
with an output of 181 neurons and an input of 8× 8× 2. For
our ULA experiments, the input used was 16 × 16 × 2, and
we had 201 neurons at the output.

The main body of the ResNet contains the convolutional
layers, and it is where the feature extraction happens. The
classifier is composed of fully connected layers. It interprets
the extracted features and separates them into various classes -
angles in our case. The output y of the ResNet is a probability
distribution, where each output neuron has a value between 0
and 1. The closest to 1, the higher the probability that a target
exists at that particular angle. It is important to note that this
probability measures how strongly the NN believes a target
exists (or not) at a certain angle, not being a real probability
representation of the problem.

C. Post-Processing

After obtaining the probability distribution as the output y
of the NN, a post-processing step is required for selecting
the most probable DOAs. The post-processing step selects
the N̂ most likely DOAs from the probability distribution
given a previously known (N̂ = N ) or estimated (N̂ = Ñ )
number of sources. In the beginning, the most probable angles
θ̂ = θ̂1, ..., θ̂2N̂ contain the estimated angles θ̃ = θ̃1, ..., θ̃N̂ . In
other words, θ̃ ∈ θ̂. After all steps, all inadequate angles are
deleted, and the result is that θ̃ = θ̂.

The post-processing algorithm works by following this
sequence:

1) Get the 2N̂ most probable angles θ̂ = θ̂1, ..., θ̂2N̂ of y.
2) Delete any angle that is at least 100 times smaller than

the most strong probable angle.
3) Find N̂ peaks in θ̂.
4) If the remaining size of θ̂ is bigger than N̂ , delete the

less likely angles until reaching N̂ .
5) If the size of θ̂ is smaller than N̂ , use the most likely

angles that are in the vicinity of the peaks and belong
to the 2N̂ most probable angles.

6) If the size of θ̂ is still smaller than N̂ , repeat the most
strong peak until reaching N̂ .

Another way to illustrate the dynamic between ResNet
and the post-processing step is through Fig. 3, which shows
the output of ResNet with its probability distribution, the
most probable angles, and the final estimated angles. In this
example, N̂ = 3, therefore 2N̂ = 6. The correctly estimated
DOAs were −33◦, 40◦, and 45◦. It is interesting to note that
the −33◦ angle was correctly selected (because it is a peak),
even though the 44◦ angle has a stronger neuron output.
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Fig. 3: A ResNet output and post-processing example.
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D. Estimating Number of Sources

In addition to estimating DOAs, we have considered the
estimation of the number of sources. As seen in Fig. 4, instead
of using a new neural network or another solution, we have
just created a new classifier with new fully connected layers,
using the features extracted by the main body of the ResNet.

Our Number of Source Estimator (NSE) has 6 neurons in
the output layer, meaning that it can estimate the following
number of targets: Ñ = 0, 1, 2, 3, 4, or >4 sources. It is
important to note that our estimator considers the absence of
sources (Ñ = 0) and that anything above 4 targets is classified
in only one category, without distinction (Ñ > 4).

IV. EVALUATION

We have performed various experiments during this re-
search. Firstly we tested the best deep learning architecture.
Moreover, we have compared ResNet with MLE in different
scenarios. For the evaluation, we have considered a few
metrics such as Root Mean Square Error (RMSE), percentage
of angles estimated correctly within resolution (accuracy), and
percentage of estimated DOAs that are too far from the correct
answer (outliers).

Most researchers [7]–[9] estimating the DOA tend to choose
Root Mean Square Error (RMSE) as at least one of their
metrics. In our work, this was no different. The RMSE used
by our research is given by:

RMSE =
1

L

L∑
l=1

√√√√ 1

K ×N

K∑
k=1

N∑
n=1

(θn,k − θ̃n,k,l)2, (7)

where K is the number of samples, N is the number of
sources, L is the number of Monte-Carlos trials, θ̃n,k,l is the
estimated angle, and θn,k is the actual angle. For the situation
where the number of sources is unknown, N is replaced by
Ñ .

One of the problems of RMSE is that it does not show
the complete picture. A higher RMSE may be due to a few
incorrect but far away angles, while a lower RMSE could be
due to many incorrect but closer angles. That is why we also
use accuracy as a metric. We define in this paper accuracy as
the percentage of angles that are correctly estimated within the

TABLE I: Different DNN architectures and configurations.

DNN Number of Accuracy for 2 angles
Type Layers with SNR = 30 dB*

MLE2D - 88.9 %
FCNN 8 FC Layers 82.29 %
CNN 4 Conv. + 2 FC Layers 79.7 %

ResNet 12 Conv. + 2 FC Layers 90.1 %

resolution. If the resolution of 1◦ is used, anything below 0.5◦

should be considered a correct estimate. In addition, we also
analyzed the percentage of what we called outliers. In most
cases, it makes no difference if a particular target is incorrectly
estimated by 15 or 50 degrees. Therefore, in our work, any
error (difference between the estimated and the actual angles)
above (5◦ × resolution) is considered an outlier.

A. Evaluating Different Architectures

For the first experiment, the training was done with a
reduced dataset, so the time to train and evaluate could be
shortened. Therefore this does not show the full potential
of the neural networks. Although, since they are scalable,
better performance with a limited dataset should also mean
better performance with a larger dataset. For this experiment,
we have used 8 antennas in MRA configuration (where the
distance between antennas are: 0, 1, 4, 6, 13, 14, 17, 19
×λ/2), single-snapshot, a resolution of 1 degree, a FOV of
180 degrees, and 2 targets. The neural networks were evaluated
using 10 thousand data points (K) and 100 Monte-Carlo trials
(L). The number of sources was previously known. In Table
I, we can see that the ResNet has the best performance when
compared to the Fully Connected Neural Network (FCNN)
and Convolutional Neural Network (CNN). It is important to
note that, although ResNet has more layers, it is less computa-
tionally demanding than CNN (multiply-accumulate: 5.1×106

and 2.5 × 107, respectively) and a bit more demanding than
FCNN (multiply-accumulate: 3.3×106) due to its architecture.

B. Experiments using MRA Antenna Array

The following experiments use the same parameters as the
first experiment, 8 antennas in the same MRA configuration.
However now, our ResNet was trained with a generated dataset
with 40 million data points, containing from 0 to 5 targets,
amplitudes from sources varying from 0.5 to 1, and SNR
ranging between 0 and 30 dB. Although 40 million might seem
like a large number, when considering all possible scenarios,
it just represents a small fraction of all possibilities. Hence,
the NN needs to learn how to generalize during training.

Due to the complexity of MLE, we had to reduce its FOV
(the FOV for ResNet is always 180◦ for MRA) and the amount
of evaluating data as the number of sources increased in order
to produce the results within a feasible amount of time.

As shown in Fig. 5, our proposed model performs well in
a single-snapshot MRA environment. When considering one
source, our NN had a performance close to that of MLE.
For two sources, our model performed better than MLE. For
three sources, the ResNet was better for low SNR levels and
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Fig. 5: RMSE vs. SNR for MLE and our proposed ResNet
model between 1 and 4 sources. For this experiment, the
number of sources was previously known. (a) 1 source, FOV
of 160◦, and 10,000 data points. (b) 2 sources, FOV of 160◦,
and 10,000 data points. (c) 3 sources, FOV of 150◦, and 8,000
data points. (d) 4 sources, FOV of 100◦, and 5,000 data points.

slightly worse for high SNR levels. For four sources, the neural
network was slightly better in low SNR and slightly worse in
high SNR. In general, our model performs well under high
noise levels and quite similarly to MLE when noise decreases.

In Fig. 6, we can see both accuracy and outliers for different
scenarios. The solid line represents the accuracy (percentage of
angles that are correctly estimated within the resolution), and
the dotted line represents the percentage of outliers (when the
model incorrectly estimates a source by more than 5 degrees).
The trends observed in Fig. 5 are also repeated in Fig. 6.
However, there is an exception. For three sources and high
SNR, the neural network is more accurate, but due to having
more outliers than MLE, it has a slightly worse RMSE.

For the following experiment (shown in Fig. 7), we have
used the same scenario as the previous experiment, now,
however, the number of sources is previously unknown, and
we also need to estimate it. In this experiment, we compared
the performance of the ResNet architecture, shown in Fig.
4, with Algorithm 1 that uses MLE. Due to the complexity
of MLE, it was not feasible to apply Algorithm 1 for more
than three sources. Graphs (a), (b), and (c) of Fig. 7 have
two vertical axes. One for RMSE in semilog (left, full line)
and the other for the correctly estimated number of sources,
given in percentage (right, dashed line). Graph (d) has the
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Fig. 6: Accuracy and Outliers vs. SNR for MLE and our
proposed ResNet model between 1 and 4 sources. For this
experiment, the number of sources was previously known. (a)
1 source, FOV of 160◦, and 10,000 data points. (b) 2 sources,
FOV of 160◦, and 10,000 data points. (c) 3 sources, FOV of
150◦, 8,000 data points. (d) 4 sources, FOV of 100◦, and 5,000
data points.

accuracy of the Number of Source Estimator (NSE) for both
the neural network (Fig. 4) and the maximum likelihood
estimation (Algorithm 1).

In Fig. 7, we can observe that the RMSE performance of
ResNet is similar but slightly higher than the one shown in
Fig. 5. On the other hand, the performance of ResNet when
estimating the number of targets is much superior to when
using MLE and Algorithm 1. It is also important to note that,
although the MLE is worse than ResNet when performing the
number of targets estimation, its RMSE is not. This happens
because eq. 7 only considers whether any of the estimated
angles are similar to the real angles. For example, Algorithm
1 could have detected the presence of three targets when only
one is present. However, if any of the three estimated angles
are similar to the real target angle, the RMSE value would be
the same as if the number of targets would have been correctly
estimated.

C. Experiments using ULA Antenna Array

As seen before in Fig. 5, our model performs well for single-
snapshot MRA. Moreover, this is also true for single-snapshot
ULA. For this scenario, we tried to replicate the results of
the work from Bialer et. al. [7], although our attempts were
unsuccessful. Therefore, we have replicated the conditions of
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Fig. 7: The left vertical axis is RMSE vs. SNR. The right ver-
tical axis is the percentage of the correctly estimated number
of sources vs. SNR. The number of sources is unknown. The
number of actual sources varies between 1 and 3. The number
of sources was estimated using a Number of Source Estimator
(NSE). (a) 1 source, FOV of 160◦, and 10,000 data points. (b)
2 sources, FOV of 150◦, and 8,000 data points. (c) 3 sources,
FOV of 100◦, and 3,000 data points. (d) Bar graph showing
the accuracy of the NSE vs. the actual number of sources.

their work and used our own MLE, RootMUSIC with spatial
smoothing, and ESPRIT with spatial smoothing algorithms [4]
to compare the performance of our model. For this experiment,
we have retrained our model with 12 million data points
containing: 16 uniformly separated antennas (which means
that this input was X ∈ R16×16×2), separated by 0.5λ, FOV
of 20◦, resolution of 0.1◦ (giving us 201 neurons in the output
layer), 0 to 5 targets, amplitudes varying from 0.5 to 1, and
SNR ranging between 0 and 30 dB.

In this last experiment, the results (seen in Fig. 8) show
that our model outperformed all three other algorithms, even
though MLE performs similarly for 4 targets and high SNR.

V. CONCLUSION

In this paper, we have proposed a novel approach to solve
the direction of arrival problem for a single-snapshot using
a Residual Neural Network, with both known and unknown
numbers of targets. In this work, we have explored different
fields of views, resolutions, and antennas configurations. Both
Minimum Redundancy Linear Arrays (MRA) and Uniform
Linear Array (ULA) have been analyzed in our work.

The results of our proposed ResNet look promising. Our
model was able to outperform MLE, especially in high noise
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Fig. 8: RMSE vs. SNR for ULA, comparing 3 algorithms and
our model. The number of sources is previously known. (a)
2 sources, FOV of 20◦, resolution of 0.1 ◦, and 10,000 data
points. (b) 4 sources, FOV of 20◦, resolution of 0.1 ◦, and
1,000 data points.

situations, and when the number of targets is estimated. This
means that, at the very least, our proposed model has a
performance similar to the Maximum Likelihood Estimation
Algorithm, and it is superior when estimating the number of
targets. The shortcoming of ResNet lies in its necessity of a
fast computer for the training process, although, after training,
the computational requirements are lower than MLE and do
not change.

For future work, we would like to explore the reasons and
causes that make, in our results, ResNet superior to MLE in
some scenarios.
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