273 research outputs found
Exact Schwarzschild-Like Solution for Yang-Mills Theories
Drawing on the parallel between general relativity and Yang-Mills theory we
obtain an exact Schwarzschild-like solution for SU(2) gauge fields coupled to a
massless scalar field. Pushing the analogy further we speculate that this
classical solution to the Yang-Mills equations shows confinement in the same
way that particles become confined once they pass the event horizon of the
Schwarzschild solution. Two special cases of the solution are considered.Comment: 11 pages LaTe
The BPS Domain Wall Solutions in Self-Dual Chern-Simons-Higgs Systems
We study domain wall solitons in the relativistic self-dual Chern-Simons
Higgs systems by the dimensional reduction method to two dimensional spacetime.
The Bogomolny bound on the energy is given by two conserved quantities in a
similar way that the energy bound for BPS dyons is set in some Yang-Mills-Higgs
systems in four dimensions. We find the explicit soliton configurations which
saturate the energy bound and their nonrelativistic counter parts. We also
discuss the underlying N=2 supersymmetry.Comment: 16 pages, LaTeX, no figure, a minor change in acknowledgment
Genetic Homogeneity of the Invasive Lionfish Across the Northwestern Atlantic and the Gulf of Mexico Based On Single Nucleotide Polymorphisms
Despite the devastating impact of the lionfish (Pterois volitans) invasion on NW Atlantic ecosystems, little genetic information about the invasion process is available. We applied Genotyping by Sequencing techniques to identify 1,220 single nucleotide polymorphic sites (SNPs) from 162 lionfish samples collected between 2013 and 2015 from two areas chronologically identified as the first and last invaded areas in US waters: the east coast of Florida and the Gulf of Mexico. We used population genomic analyses, including phylogenetic reconstruction, Bayesian clustering, genetic distances, Discriminant Analyses of Principal Components, and coalescence simulations for detection of outlier SNPs, to understand genetic trends relevant to the lionfishâs long-term persistence. We found no significant differences in genetic structure or diversity between the two areas (FST p-valuesâ\u3eâ0.01, and t-test p-valuesâ\u3eâ0.05). In fact, our genomic analyses showed genetic homogeneity, with enough gene flow between the east coast of Florida and Gulf of Mexico to erase previous signals of genetic divergence detected between these areas, secondary spreading, and bottlenecks in the Gulf of Mexico. These findings suggest rapid genetic changes over space and time during the invasion, resulting in one panmictic population with no signs of divergence between areas due to local adaptation
BPS-Saturated Walls in Supersymmetric Theories
Domain-wall solutions in four-dimensional supersymmetric field theories with
distinct discrete vacuum states lead to the spontaneous breaking of
supersymmetry, either completely or partially. We consider in detail the case
when the domain walls are the BPS-saturated states, and 1/2 of supersymmetry is
preserved. Several useful criteria that relate the preservation of 1/2 of
supersymmetry on the domain walls to the central extension appearing in the N=1
superalgebras are established. We explain how the central extension can appear
in N=1 supersymmetry and explicitly obtain the central charge in various
models: the generalized Wess-Zumino models, and supersymmetric Yang-Mills
theories with or without matter. The BPS-saturated domain walls satisfy the
first-order differential equations which we call the creek equations, since
they formally coincide with the (complexified) equations of motion of an analog
high-viscosity fluid on a profile which is given by the superpotential of the
original problem. Some possible applications are considered.Comment: Several equations are corrected, the discussion of the
two-dimensional soliton in Section 6 is modified, references are updated and
expande
The AdS/QCD Correspondence: Still Undelivered
We consider the particle spectrum and event shapes in large N gauge theories
in different regimes of the short-distance 't Hooft coupling, lambda. The
mesons in the small lambda limit should have a Regge spectrum in order to agree
with perturbation theory, while generically the large lambda theories with
gravity duals produce spectra reminiscent of KK modes. We argue that these
KK-like states are qualitatively different from QCD modes: they are deeply
bound states which are sensitive to short distance interactions rather than the
flux tube-like states expected in asymptotically free, confining gauge
theories. In addition, we also find that the characteristic event shapes for
the large lambda theories with gravity duals are close to spherical, very
different from QCD-like (small lambda, small N) and Nambu-Goto-like (small
lambda, large N) theories which have jets. This observation is in agreement
with the conjecture of Strassler on event shapes in large 't Hooft coupling
theories, which was recently proved by Hofman and Maldacena for the conformal
case. This conclusion does not change even when considering soft-wall
backgrounds in the gravity dual. The picture that emerges is the following:
theories with small and large lambda are qualitatively different, while
theories with small and large N are qualitatively similar. Thus it seems that
it is the relative smallness of the 't Hooft coupling in QCD that prevents a
reliable AdS/QCD correspondence from emerging, and that reproducing
characteristic QCD-like behavior will require genuine stringy dynamics to be
incorporated into any putative dual theory.Comment: 32 pages, 15 figures; references added, minor changes, history
clarifie
A numerical study of multi-soliton configurations in a doped antiferromagnetic Mott insulator
We evaluate from first principles the self-consistent Hartree-Fock energies
for multi-soliton configurations in a doped, spin-1/2, antiferromagnetic Mott
insulator on a two-dimensional square lattice. We find that nearest-neighbor
Coulomb repulsion stabilizes a regime of charged meron-antimeron vortex soliton
pairs over a region of doping from 0.05 to 0.4 holes per site for intermediate
coupling 3 < U/t <8. This stabilization is mediated through the generation of
``spin-flux'' in the mean-field antiferromagnetic (AFM) background. Holes
cloaked by a meron-vortex in the spin-flux AFM background are charged bosons.
Our static Hartree-Fock calculations provide an upper bound on the energy of a
finite density of charged vortices. This upper bound is lower than the energy
of the corresponding charged stripe configurations. A finite density of charge
carrying vortices is shown to produce a large number of unoccupied electronic
levels in the Mott-Hubbard charge transfer gap. These levels lead to
significant band tailing and a broad mid-infrared band in the optical
absorption spectrum as observed experimentally. At very low doping (below 0.05)
the doping charges create extremely tightly bound meron-antimeron pairs or even
isolated conventional spin-polarons, whereas for very high doping (above 0.4)
the spin background itself becomes unstable to formation of a conventional
Fermi liquid and the spin-flux mean-field is energetically unfavorable. Our
results point to the predominance of a quantum liquid of charged, bosonic,
vortex solitons at intermediate coupling and intermediate doping
concentrations.Comment: 12 pages, 25 figures; added references, modified/eliminated some
figure
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
Horizons, Constraints, and Black Hole Entropy
Black hole entropy appears to be ``universal''--many independent
calculations, involving models with very different microscopic degrees of
freedom, all yield the same density of states. I discuss the proposal that this
universality comes from the behavior of the underlying symmetries of the
classical theory. To impose the condition that a black hole be present, we must
partially break the classical symmetries of general relativity, and the
resulting Goldstone boson-like degrees of freedom may account for the
Bekenstein-Hawking entropy. In particular, I demonstrate that the imposition of
a ``stretched horizon'' constraint modifies the algebra of symmetries at the
horizon, allowing the use of standard conformal field theory techniques to
determine the asymptotic density of states. The results reproduce the
Bekenstein-Hawking entropy without any need for detailed assumptions about the
microscopic theory.Comment: 16 pages, talk given at the "Peyresq Physics 10 Meeting on Micro and
Macro structures of spacetime
Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider
This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the Ï(4S), Ï(3S), and Ï(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-âe+e- and (for the Ï(4S) only) e+e-âÎŒ+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-âe+e- and e+e-âÎŒ+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the Ï(3S) and Ï(2S) resonances, an additional uncertainty arises due to Ïâe+e-X background. For data collected off the Ï resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the Ï(4S), 0.58% (0.72%) for the Ï(3S), and 0.68% (0.88%) for the Ï(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă lâEnergie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
- âŠ