118 research outputs found
Systems approaches to animal disease surveillance and resource allocation: methodological frameworks for behavioral analysis
While demands for animal disease surveillance systems are growing, there has been little applied research that has examined the interactions between resource allocation, cost-effectiveness, and behavioral considerations of actors throughout the livestock supply chain in a surveillance system context. These interactions are important as feedbacks between surveillance decisions and disease evolution may be modulated by their contextual drivers, influencing the cost-effectiveness of a given surveillance system. This paper identifies a number of key behavioral aspects involved in animal health surveillance systems and reviews some novel methodologies for their analysis. A generic framework for analysis is discussed, with exemplar results provided to demonstrate the utility of such an approach in guiding better disease control and surveillance decisions
The KMOS Redshift One Spectroscopic Survey (KROSS): the TullyâFisher relation at z ⌠1
We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) TullyâFisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/Ï > 3, where Ï is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK/mag=(â7.3±0.9)Ă[(log(V80/km sâ1)â2.25]â23.4±0.2MK/mag=(â7.3±0.9)Ă[(logâĄ(V80/km sâ1)â2.25]â23.4±0.2, and log(Mâ/Mâ)=(4.7±0.4)Ă[(log(V80/km sâ1)â2.25]+10.0±0.3logâĄ(Mâ/Mâ)=(4.7±0.4)Ă[(logâĄ(V80/km sâ1)â2.25]+10.0±0.3, respectively. We find an evolution of the M* TFR zero-point of â0.41 ± 0.08 dex over the last âŒ8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ⌠1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities
An Effective-Medium Tight-Binding Model for Silicon
A new method for calculating the total energy of Si systems is presented. The
method is based on the effective-medium theory concept of a reference system.
Instead of calculating the energy of an atom in the system of interest a
reference system is introduced where the local surroundings are similar. The
energy of the reference system can be calculated selfconsistently once and for
all while the energy difference to the reference system can be obtained
approximately. We propose to calculate it using the tight-binding LMTO scheme
with the Atomic-Sphere Approximation(ASA) for the potential, and by using the
ASA with charge-conserving spheres we are able to treat open system without
introducing empty spheres. All steps in the calculational method is {\em ab
initio} in the sense that all quantities entering are calculated from first
principles without any fitting to experiment. A complete and detailed
description of the method is given together with test calculations of the
energies of phonons, elastic constants, different structures, surfaces and
surface reconstructions. We compare the results to calculations using an
empirical tight-binding scheme.Comment: 26 pages (11 uuencoded Postscript figures appended), LaTeX,
CAMP-090594-
Using a simple expert system to assist a powered wheelchair user
A simple expert system is described that helps wheelchair users to drive their wheelchairs. The expert system takes data in from sensors and a joystick, identifies obstacles and then recommends a safe route. Wheelchair users were timed while driving around a variety of routes and using a joystick controlling their wheelchair via the simple expert system. Ultrasonic sensors are used to detect the obstacles. The simple expert system performed better than other recently published systems. In more difficult situations, wheelchair drivers did better when there was help from a sensor system. Wheelchair users completed routes with the sensors and expert system and results are compared with the same users driving without any assistance. The new systems show a significant improvement
Born into adversity: psychological distress in two birth cohorts of second-generation Irish children growing up in Britain
This work was supported by the Medical Research Council
(MRC), in the form of a fellowship awarded to J.D.-M.
(grant no. G0701595/1).
A critical analysis of high-redshift, massive galaxy clusters: I
We critically investigate current statistical tests applied to high redshift
clusters of galaxies in order to test the standard cosmological model and
describe their range of validity. We carefully compare a sample of
high-redshift, massive, galaxy clusters with realistic Poisson sample
simulations of the theoretical mass function, which include the effect of
Eddington bias. We compare the observations and simulations using the following
statistical tests: the distributions of ensemble and individual existence
probabilities (in the >M,>z sense), the redshift distributions, and the 2d
Kolmogorov-Smirnov test. Using seemingly rare clusters from Hoyle et al.
(2011), and Jee et al. (2011) and assuming the same survey geometry as in Jee
et al. (2011, which is less conservative than Hoyle et al. 2011), we find that
the (>M,>z) existence probabilities of all clusters are fully consistent with
LCDM. However assuming the same survey geometry, we use the 2d K-S test
probability to show that the observed clusters are not consistent with being
the least probable clusters from simulations at >95% confidence, and are also
not consistent with being a random selection of clusters, which may be caused
by the non-trivial selection function and survey geometry. Tension can be
removed if we examine only a X-ray selected sub sample, with simulations
performed assuming a modified survey geometry.Comment: 20 pages, 6 figures, 2 tables, modified to match accepted version
(JCAP); title changed, main analysis unchanged, additional analysi
To wet or not to wet: that is the question
Wetting transitions have been predicted and observed to occur for various
combinations of fluids and surfaces. This paper describes the origin of such
transitions, for liquid films on solid surfaces, in terms of the gas-surface
interaction potentials V(r), which depend on the specific adsorption system.
The transitions of light inert gases and H2 molecules on alkali metal surfaces
have been explored extensively and are relatively well understood in terms of
the least attractive adsorption interactions in nature. Much less thoroughly
investigated are wetting transitions of Hg, water, heavy inert gases and other
molecular films. The basic idea is that nonwetting occurs, for energetic
reasons, if the adsorption potential's well-depth D is smaller than, or
comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At
the wetting temperature, Tw, the transition to wetting occurs, for entropic
reasons, when the liquid's surface tension is sufficiently small that the free
energy cost in forming a thick film is sufficiently compensated by the fluid-
surface interaction energy. Guidelines useful for exploring wetting transitions
of other systems are analyzed, in terms of generic criteria involving the
"simple model", which yields results in terms of gas-surface interaction
parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy
Genome-wide meta-analyses reveal novel loci for verbal short-term memory and learning
Understanding the genomic basis of memory processes may help in combating neurodegenerative disorders. Hence, we examined the associations of common genetic variants with verbal short-term memory and verbal learning in adults without dementia or stroke (Nâ=â53,637). We identified novel loci in the intronic region of CDH18, and at 13q21 and 3p21.1, as well as an expected signal in the APOE/APOC1/TOMM40 region. These results replicated in an independent sample. Functional and bioinformatic analyses supported many of these loci and further implicated POC1. We showed that polygenic score for verbal learning associated with brain activation in right parieto-occipital region during working memory task. Finally, we showed genetic correlations of these memory traits with several neurocognitive and health outcomes. Our findings suggest a role of several genomic loci in verbal memory processes
- âŠ