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Abstract

While demands for animal disease surveillance systems are growing, there has been little applied research that has
examined the interactions between resource allocation, cost-effectiveness, and behavioral considerations of actors
throughout the livestock supply chain in a surveillance system context. These interactions are important as feedbacks
between surveillance decisions and disease evolution may be modulated by their contextual drivers, influencing the
cost-effectiveness of a given surveillance system. This paper identifies a number of key behavioral aspects involved
in animal health surveillance systems and reviews some novel methodologies for their analysis. A generic framework
for analysis is discussed, with exemplar results provided to demonstrate the utility of such an approach in guiding
better disease control and surveillance decisions.
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Introduction

Demands for animal disease surveillance systems have
increased in recent years, given the changing landscape of
global trade and increased concerns about exotic pathogens
[1]. Various rubrics of surveillance modalities, ranging from
targeted surveillance [2], risk-based surveillance [1], and
participatory disease surveillance [3] have emerged in
response as a way of making such programs more cost-
effective; recent research has synthesized these terminologies
[4]. Much of the focus in the veterinary epidemiology literature,
on risk-based surveillance in particular, has been on technical
criteria associated with risk and risk factors that underpin
disease, and the means by which disease searching and
monitoring better account for such criteria [1].

By contrast, analyses that focus on the resource allocation
side of the surveillance equation are much more limited.
Recently, Cannon [5] reviewed different metrics of surveillance
resource optimization problems based on different objectives
by decision-makers (e.g., maximizing detection, minimizing

detection time, maximizing benefits from early detection),
providing generic examples for setting up each approach. Such
optimization approaches to surveillance have been applied in
other related areas including fisheries surveillance [6] and
invasive species management in the ecology literature [7-9],
but have not generally been utilized in the veterinary literature.
Rather, surveillance programs are generally analyzed in more
broad terms, such as a component of a simulation analysis of
disease mitigation options [10-15] or in benefit-cost analyses
using economic welfare indicators (producer and consumer
surplus) [16,17]. Häsler et al. [18,19] combined simulation tools
on the benefits side with an accounting of various mitigation
costs to compute the net margin available for surveillance costs
in the context of bluetongue and bovine viral diarrhea (BVD),
respectively. Recently, Howe, Häsler, and Stärk [20] provided a
theoretical exposition on the relationship between surveillance
and intervention expenditures. Rather than focusing solely on
the tradeoffs between surveillance and intervention, the
authors highlighted the need to jointly consider both types of
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expenditures together to maximize the net benefits associated
with avoided disease losses.

In the context of risk-based surveillance, Prattley et al. [21]
applied portfolio theory from the finance literature to develop
numerical indicators that provide guidance on the allocation of
surveillance resources in light of their risk factors. Earlier work
by Mariner et al. [22] also utilized a number of performance
indicators to evaluate surveillance programs associated with
Rinderpest control, which Benschop et al. [23] applied a risk
analysis framework to highlight specific spatial risks associated
with herd sizes, feeding practices, and health status that are
attributable to disease prevalence. Gilbert, Häsler, and
Rushton [24] recently developed survey-based protocols to
probabilistically assess various drivers and predictors
associated with farm and veterinary behavior that influence
reporting and compliance. Farm-level predictors included
characteristics such as the production system employed,
monitoring scheme membership, frequency of veterinary
contact, herd size, and farm-level record keeping. However,
none of these risk-based approaches looked explicitly at how
best to allocate resources given different risk factors.

An additional, and important, gap in all of these analyses is
couching the optimal allocation of resources (however defined),
with the risk factors that might significantly modulate their
effectiveness in mitigating disease itself. Hauser and McCarthy
[8] come closest in this regard by paying particular attention to
the spatial allocation of resources based on the efficacy and
presence of disease over a landscape. Despite this, their
analysis was static, and did not link the allocation and efficacy
of surveillance resources to subsequent disease incidence in
future periods. However, in an animal disease setting, where
the behavior of agents can actively influence the epidemiology
of disease [25], it is critical to evaluate resource allocation in its
appropriate dynamic systems setting. Put differently, decisions
by policymakers in surveillance programs will have an effect on
the behavior of producers and other actors in the agri-food
chain, which in turn can influence the epidemiology of disease,
and consequently, the cost-effectiveness of surveillance
systems over time. These feedbacks can be complex and not
intuitive, requiring more nuanced approaches to their economic
analysis.

Related to this, and a crucial factor which has rarely been
considered, is that the nature of surveillance itself is not static.
Surveillance programs will differ in nature not only based on
the context of the disease, but also on the efficacy of disease
control programs and the objectives and goals of decision
makers themselves. While Hadorn and Stärk [26] recently
contrasted the effectiveness of active and passive surveillance
systems in a decision-tree framework, their analysis did not
capture how these objectives could change over time as the
success in controlling (or failing to control) disease changes.
By contrast, Häsler et al. [27] considered surveillance in the
context of the type of disease and the evolutionary stages of
diseases over time. They considered three stages of disease:
(i) sustainment, in which the surveillance objective is either to
maintain disease freedom or detect disease; (ii) investigation,
in which the objective is to obtain more information about an
endemic or epidemic disease; and (iii) implementation, in which

surveillance serves as an information source for mitigation
options. Such a conceptual framework highlights the dynamism
inherent within surveillance programs and strongly suggests a
need for system-based empirical approaches to address them.

In this paper, we provide a more robust conceptual
framework for the allocation and composition of surveillance
resources, overlaying the socio-economic drivers of risk and
disease response alongside the biological and spatial
dimensions of disease. In this manner, the paper builds on two
recent analyses that examined resource allocation issues in a
disease setting. First, it extends the work of Cannon [5] by
adding the systems dimension regarding the behavioral
aspects, attitudes, constraints, and practices of producers and
other recipients of surveillance resources [24]. The approach is
akin to the recent analysis of Duintjer Tebbens and Thompson
[28] that analyzed alternative decision rules for resource
allocation in its dynamic epidemiological context. However, our
approach highlights the interface of the disease epidemiology
with different types of actors in the agri-food chain based on
their risk profiles [25], while maintaining the alternative decision
rule metrics of past analyses.

An advantage of this framework is that it can accommodate
significant heterogeneity and feedback mechanisms in this
socio-economic overlay, based on data availability and the
nature of the disease in question. The analysis presented here
is necessarily dynamic, and has the advantage of modeling
both the evolution of surveillance resources based on their
effectiveness over time and taking into account external drivers
that might influence uptake, thus providing a set of empirical
tools that combine and overlay the framework found in Häsler
et al. [27] and risk factors revealed in Gilbert, Häsler, and
Rushton [24]. Our analysis first presents a series of general
principles that underpin this approach, followed by a generic
example of an application of these methods to disease control
in Scotland.

Materials and Methods

1: Conceptual framework: principles for analysis
A starting point for our analysis is to first place surveillance

efforts in their epidemiological and socio-economic contexts.
One way to conceptualize surveillance efforts is in their
contribution to the reduction of disease. Figure 1 characterizes
this relationship in terms of a “decay curve” of disease,
whereby the incidence of disease is posited to (ideally) decline
over time as surveillance resources are allocated towards the
detection and mitigation of disease. The smooth shapes of
such decay curves are more prominent in diseases in which
wide-scale eradication programs are implemented, as
illustrated in the examples of polio, smallpox, and malaria [28].
At different points along this decay curve, one will utilize
different types (and mixes) of surveillance and mitigation
strategies to bring disease to lower and lower levels. In
endemic settings, the decay curve might level off at some non-
zero level or oscillate in regular intervals on the basis of a
variety of agro-ecological, climatic, socio-economic, or other
factors (Figure 2).
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This latter point is particularly salient in many disease
instances, but also illustrates a fundamental point often
overlooked in the literature; namely, surveillance activities do
not take place in a vacuum. As different programs are put into
place, they will have a direct influence on the epidemiology of
the disease (through control measures), and an indirect effect
on behaviors taken by recipients of surveillance services that
will modulate (positively or negatively) those efforts.
Meanwhile, other changes take place that are not directly
associated with the decay curve or its surveillance programme
but nevertheless have an important influence on them. These
might include progressive changes in the agricultural industry
e.g. those associated with the ‘treadmill of technology’ or

Figure 1.  Decay curve relating disease incidence with
surveillance efforts over time.  
doi: 10.1371/journal.pone.0082019.g001

Figure 2.  Alternative paths of disease incidence over
time.  
doi: 10.1371/journal.pone.0082019.g002

sudden changes associated for example with policy
intervention.

Figure 3 illustrates these interactions in a causal loop
diagram, a commonly used tool in the system dynamics
literature to illustrate the feedback mechanisms present in
complex systems [29]. Note that Figure 3 is an abstraction of
many of the behaviors implicit in this system and necessarily
excludes a number of key influences to simplify the analysis.
The inner loop of the diagram provides the standard
conceptualization of the role of surveillance – greater intensity
in disease surveillance leads to more detections, and
correspondingly more control measures, which over time
should have the effect of bringing disease down to its desired
level (possibly zero). However, as the diagram also illustrates,
both surveillance programs and control measures impose costs
on producers (and others in the agri-food chain). This might
directly influence the level of production (less animals
produced), modulating the incidence of disease downward. On
the other hand, it could also lead to more risky behaviors that
increase the risk of disease and lead to more trade (to meet
consumer demand) from areas with more or less disease risk.
These risk factors can be further segmented based on the type
of disease considered (endemic vs. exotic, diseases that affect
international trade), geography, types of production systems,
capacity and knowledge from producers, seasonal drivers, as
well as the interaction between producers through trade or
other social networks. The importance of various factors will
necessarily be disease-specific, with some factors much more
important than others depending on the disease.
Countervailing this further are the pressures surveillance and
control programs face from resource constraints on budgets,
which place limits on the level of efforts that can be made from
surveillance. An important aspect of Figure 3 is in directly
illustrating the relationships between the disease, its socio-
economic risk factors, and the role surveillance efforts play in
influencing this feedback structure. Correspondingly, any
optimal allocation of surveillance resources needs to account
for these dynamic impacts as additional constraints.

An important related issue further illustrated in Figure 3
involves distinguishing who carries out surveillance activities
themselves i.e., whether they are managed by the public sector
or carried out privately among different actors in the agri-food
chain. These motivations might be rather different. From the
standpoint of the public sector, regulatory mandates (including
compensation schemes in place) might shape protocols for
surveillance, while for the private sector, these may be driven
by competitive factors, such as the need to differentiate
products in the marketplace. Among private sector actors
themselves, and in different agri-food chains (e.g., commercial-
oriented production vs. hobby farms), these motivations might
differ significantly. Furthermore, surveillance activities
conducted by the private and public sectors may overlap.

2: A review of candidate methodologies for analyzing
the systems setting of surveillance

There are a couple of potential methods that more explicitly
model the complexity of the problem discussed above. Such
methods move away from optimization approaches [5], though
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these methods can represent a first approximation to the
complexity of the surveillance problem, albeit without feedback
effects implicitly considered. One method of setting up this type
of problem is to model the system illustrated in Figure 3 directly
as a system dynamics (or SD) problem. In this manner, the
allocation of surveillance and mitigation resources can follow
various decision rules established within the model [28], as can
various strategies for disease control itself [30]. In this manner,
Homer and Hirsch [31] examined the tradeoffs between
diagnostic and therapeutic interventions in a generic model of
public health. As will be seen shortly, such an approach can be
easily adapted in a model of animal disease surveillance. A
further advantage of a systems approach is the ability to
overlap relevant socio-economic drivers that might influence
the allocation of resources themselves. For instance, Ulli-Beer
et al. [32] incorporated socio-economic behavior and attitudes
towards waste and recycling decisions in a model that sought
to optimize government budget resources towards incentives
for effective waste management. Rich [25] proposed a way to
link economic decisions with biological drivers of disease, but
cost implications of alternative strategies from the
epidemiological side were not considered. The manner in
which economic agents are modeled can take a number of
forms, depending on data availability, level of analysis,
production system, and spatial diversity.

Figure 4 provides a relatively generic template for
incorporating surveillance and mitigation decisions into a
disease control framework, extending the approach of Duintjer

Tebbens and Thompson [28] and using the iThink software
system (http://www.iseesystems.com). In this model, a simple
S-I-R model of disease spread is developed that traces the
evolution of animals or herds between different disease states
of nature. In the diagram, the rectangles represent stocks of
animals or herds at any given period of time, i.e., the number of
animals/herds in the states susceptible, infected, or removed.
The wide arrows denote the flows of animals/herds between
different states. In the mathematical language of S-I-R models,
these would be the differential equations that would underpin
the movement of actors between states. The small circles and
thin arrows that connect them to stocks, flows, or other circles
are parameters that relate stocks and flows (and parameters).
These can include rates of disease transmission, populations
of animals/herds, efficacy rates of vaccination, and so on. In
the model, transitions between susceptible and recovered (via
vaccination) and recovered to susceptible (due to waning
immunity) are included, while other disease states included
latency and incubation periods could also be added [30]. A
powerful advantage to modeling in iThink is the graphical
representation of complex, non-linear systems of differential
equations. Indeed, behind the graphical interface are functional
forms that relate stocks, flows, and parameters in line with
standard epidemiological theory.

At the top and bottom of Figure 4 are two diamond shapes
that denote decision processes. These decision processes take
as inputs (connected via thin dotted lines) the types of
information required to inform a decision, which subsequently

Figure 3.  Causal loop diagram of surveillance in its systems setting.  
doi: 10.1371/journal.pone.0082019.g003
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leads to actions taken that are defined as parameters. In this
model, two key decisions are undertaken: decisions to allocate
surveillance resources and decisions to apply mitigation
measures, based on the outcome from surveillance. In this
model, surveillance decisions are made on the basis of
budgetary considerations, unit costs for different measures, the
size of the population to be surveyed, and goals relating
current disease incidence to actual incidence. As noted in
Figure 3 and earlier in the paper, there will be feedbacks
between the changing course of disease and the decision set
for surveillance decisions that are incorporated in this model.
Similarly, mitigation decisions are influenced by the type of
surveillance undertaken, budget resources, mitigation costs,
and detection efficacy, which in turn influence the course of
disease (and, in the next period, the choice of surveillance
strategy used). Thus, the operationalized model of Figure 4
incorporates the feedback structure found in Figure 3
concerning the relationships between surveillance, detection,
mitigation, and control.

What about the overlays with socio-economic factors? In this
case, the system dynamics model presented in Figure 4 can be
used in conjunction with a variety of different economic
frameworks. Following Rich [25], the epidemiology and
economics could be linked through economic decisions that
alter entry and exit rates (e.g., via births of animals, slaughter
or breeding decisions) and transmission rates (via risk factors
in production, rates of trade between regions, e.g.).
Surveillance actions themselves can influence the economics
if, for example, different strategies add costs for producers,

which subsequently alter their production patterns in ways that
could modulate the spread of disease as just described.

The exact structure of the socio-economic side of the model
will vary depending on context. Rich [25] utilized a population
model of livestock that separated animals into different age
cohorts that was linked with market demand for livestock
products. As disease time steps in S-I-R models are often daily
or weekly, such a population structure approach might be more
amenable in species with shorter production cycles such as
poultry. A more generic approach would be to directly model
representative farm production decisions as a mathematical
programming model in which typologies of agents maximize
profits subject to various resource and other technical
constraints. These types of models have been used in Scottish
applications in recent years to look at the impact of animal
health mitigations on farm- or herd-decisions [33,34]. In iThink,
these models can be used to directly calculate the period-by-
period optimization decisions of representative producers
through an interface with Microsoft Excel.

A disadvantage of using system dynamics models is that the
level of aggregation of agents is often too broad. In an SD
model, the system in question describes a representative
system or agent (or average of agents), which may fail to
capture the heterogeneity of farm types and actors in the
system. An alternative in this case is to utilize an agent-based
approach, where the agents involved can be individual-level
farms or individuals, each with different types of rule systems
that govern their behavior [35]. These rules can be based both
on economic phenomenon (e.g., decisions to buy or hold cattle
in response to changes market prices) and epidemiological

Figure 4.  A system dynamics model of the interface between surveillance and disease spread.  
doi: 10.1371/journal.pone.0082019.g004
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ones (e.g., reactions to disease protocols). One of the
advantages of such an approach is the possibility to
encapsulate different aspects of the overall model, for example
an on-farm disease model, a between-farm movements model,
and a behavioural feedback model, with only a few well defined
interactions between these modules. This means that the
internal functionality of each module can then be extensively
re-written without modifying the other modules. The main
disadvantages of this approach are the computational
requirements associated with such numerical methods, as well
as the complexity in the underlying code and resultant difficulty
in summarizing and evaluating the model. However,
segregating the on-farm disease, movements, and behavioural
feedback modules in this way greatly improves the legibility of
the code for each aspect of the model while preserving all of
the potential complexity of the full model, and fits nicely into an
object-oriented programming framework.

We propose a framework for such an agent-based model
written in the C++ programming language. At the core of this
model is an object class representing a population of actors,
with externally accessible methods to summarise and return
the observed and latent state of each actor, as well as methods
to create and remove actors from the population. This high-
level object represents a single realisation of the system to be
studied, and is given fixed parameters controlling the
demography of the system such as the number and types of
actors in the system, what the behavioural attributes of these
actors are, the parameters governing test outcomes and
disease transmission, and the economic model to be used.
These parameters are used to set up multiple, possibly
heterogenous lower level objects belonging to an actor class,
each of which has external methods to return the observed and
latent state of that actor (with internal rules determining the
relationship between these states), methods to interact with
other actors, and a set of internal rules defining how the
behaviour of that actor is affected by these interactions. In the
simplest case these actors need contain nothing else, although
more complex farm classes inheriting from the parent class of
actor will likely introduce complex on-farm disease dynamic
models and diagnostic test representations. The actor class
may also incorporate physical heterogeneity, such as herd
size, farm type, breed of animals, proximity to water sources,
as well as variations in the responses of farmers to external
stimuli, using parameter values drawn from a distribution
describing all actors at initialization of the class. The
metapopulation object also contains regulator class objects
representing the media and government influences on the
system, which will be passed information on the observed
disease state of the actors, and influence the behaviour of
actors according to the media and government response to this
observed disease state. Finally, the economic features of the
system are controlled by a further regulator class, with
interactions between this object and each actor further
influencing the behaviour of these actors.

Each metapopulation object is allowed to run for a given time
period and the required information is extracted from the
system before another realisation of the class is invoked and
allowed to run. In this way, a full distribution of possible

outcomes given the same parameter set (representing
variability in the system) is obtained. As the majority of
parameters used to set up the simulation are likely to be at
least partially unknown, the entire process can be repeated
using multiple draws from probability distributions describing
the uncertainty in these parameter estimates to determine the
sensitivity of the system to the parameter values used.

Because of the inherent flexibility of our approach, this
framework has a variety of potential uses in disease
surveillance scenarios, as well as other applications in which
behavioural influences between multiple actors need to be
modelled. Therefore, it is our intention that this framework
should be implemented in a generic and flexible way, and the
development of new and modified classes to allow the
framework to model new diseases and populations actively
encouraged.

Results and Discussion

A simple illustration of the method was developed to assess
the impact of farm heterogeneity and behavioural feedback
effects on the observed prevalence of infected premises
following a sudden increase in prevalence of farms positive for
an endemic disease, for example due to change in climatic
conditions favourable to the causative agent. The intention of
this exemplar is to highlight the effects of behavioural feedback
and heterogeneity in farm characteristics in terms of the
number of animals, propensity to test for disease and on farm-
disease prevalence. To facilitate interpretation of the results the
true disease state of each farm is fixed and no epidemiological
model for disease spread either within or between farms is
incorporated.

For the first model, incorporating neither heterogeneity
between farms nor behavioural feedback effects, a population
of 1000 identical farms was established, with each farm
possessing 100 animals and each with the same fixed
diagnostic test sensitivity of 50 percent and specificity of 99.9
percent for an individual test on a single animal. At each time
step, we assumed a 10 percent probability of testing a given
farm for disease, with a 10 percent proportion of animals tested
conditional on this, and untested farms preserving the disease
classification held at the previous time point. To simulate the
sudden increase in farm prevalence of disease, we began the
simulation with 10 actors infected (i.e., 1 percent of farms), with
a 20 percent on-farm prevalence of disease, and after 100 time
steps an additional 90 farms were infected at a single time
step, so that a total of 100 farms – 10 percent of the sample –
were infected. The simulation was repeated 1000 times,
recording the observed proportion of infected farms at each
time step.

This exercise was then repeated using a second model that
incorporated heterogeneity between farms in terms of the
number of animals on farm, the propensity to test for disease,
and the proportion of animals tested – i.e., a situation that is
vastly more likely to reflect reality than assuming all farms are
identical. Note that although this is still likely to be simplified in
relation to reality, the complexity of this between farm
heterogeneity could be increased arbitrarily to include
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differences in farm type, risk factors such as spatial location or
proximity to water, and differences in the responses of farmers
to disease. The mean values for each parameter were taken
from the corresponding statistics from the first model, but each
farm was assigned a randomly generated value for each, with
this parameter value then remaining fixed for each farm for that
simulation but re-sampled between simulations. The test
sensitivity and specificity remained fixed at 50 percent and 99.9
percent throughout.

The third model returned to the assumption of no farm
heterogeneity used for the first model, but incorporated the
novel aspects of behavioural feedback discussed. Now, the
baseline probability of each farm testing for disease and
proportion of animals tested used for the first model were
altered at each time step according to the output of an
‘Information’ regulator agent. This modulation was calculated in
three parts: (a) an increase if the global prevalence had
increased since the last time point and decrease if prevalence
had fallen, (b) a linear effect of difference between the
observed prevalence and a threshold of 7 percent prevalence,
with observed prevalence higher than 7 percent resulting in an
increase in propensity to test and vice versa, and the
magnitude of the difference controlling the size of the effect,
and (c) an increase for individual farms if that farm was
classified as infected at the previous time point and decrease
otherwise. At each time step, the overall feedback on
propensity to test for disease was calculated and returned to
each farm by the regulator before testing was simulated for that
time step, to simulate the dynamic nature of these behavioural
effects. Again, the complexity of these agents could be
increased substantially, possibly incorporating elements of
mandatory testing, rewards systems for disease freedom, or
other forms of behaviour modification.

Finally, a fourth model was constructed using both the
heterogeneity and feedback mechanisms outlined above. For
this model, the feedback of the Information regulator agent was
applied to the farm specific baseline propensity to test for
disease so that the heterogeneity between baseline farm
attitudes to disease could be combined with the modulating
effects of the observed disease prevalence, i.e. some farms will
always look for disease harder than others, but all farms will
look for disease more effectively if they believe they have a
greater chance of having the disease. This is also complicated
by the heterogeneity between farms in terms of number of
animals, so that a farm with a larger number of animals is more
likely to observe a positive test (either true or false positive)
because of the larger number of tests applied.

The results obtained from these models are shown in Figure
5. Incorporation of farm heterogeneity results in a reduction in
the observed disease prevalence for these model parameters,
due to the varying numbers of animals between farms and
propensities to test for disease resulting in a greater number of
false negative and a reduction in false positive results at a farm
level. When behavioural feedback effects are incorporated into
the model, we observed a greater increase in the time between
disease incursion (i.e. at time 100) and the observed increase
in disease prevalence due to the behavioural ‘lag time’
introduced by failing to detect disease in the initial stages when

global prevalence is thought to be low and the disease is not
perceived to be a threat. These two effects compound each
other for model four, with the transition between observed low
and high prevalence states prolonged for each individual
simulation (examples shown in blue and green) by the sub-
population of farms with small numbers of animals and a low
propensity to test for disease, although the contrasting farms
with higher propensity to test for disease do shorten the
average lag phase between disease incursion and the initial
increase in observed disease prevalence. Equally importantly,
the stable observed disease prevalence for model four is
considerably lower than each of the simpler models and the
true figure of 10 percent. However, the magnitude and direction
of these effects appear to be highly dependant on the
parameter values used for both farm demography and
behavioural effects (data not shown), and therefore not only
reduce the precision of prevalence estimates, but also
introduce a considerable source of bias. As can be seen from
the example individual simulation outputs shown in blue and
green on Figure 5, sequential prevalence estimates can be
highly autocorrelated, which introduces a random-walk-like
effect in the observed prevalence, when the true prevalence is
in fact static.

From these results, it is apparent that behavioural feedback
mechanisms serve to reduce the usefulness of prevalence
estimates based on diagnostic tests that are carried out at the
behest of individual farms. However, mandatory surveillance,
performed by a regulator and thus being independent of
individual farm behavioural mechanisms, will produce
prevalence estimates that are less dependent on these effects,
which in turn may help to regulate the surveillance effort
through a more representative overall prevalence estimate.
Using an extension of the model incorporating both behavioural
feedback and heterogeneity as discussed above, the impact of
including different levels of mandatory surveillance on the
number of voluntary surveillance diagnostic tests performed
was assessed (Table 1). With the introduction of a small
mandatory surveillance effort of ten farms, or even only a
single farm per time step, the average number of passive
surveillance tests performed per time step increased by
substantially more than that introduced by the mandatory
surveillance effort, which corresponded to a reduction in the
average ‘lag time’ caused by failing to detect the increase in
prevalence of disease in the early stages. This suggests that,
at least for the parameter estimates used in our simulation, the
majority of the value of mandatory surveillance may not be
directly in the test results provided, but rather in the knock-on
effect of behaviour modification increasing the propensity of
farms to perform their own tests.

Although it is clear that there are some data deficient areas
of potential importance in the framework presented, especially
concerning behavioural aspects of farms, it is also clear that
ignoring these effects on the basis that they are difficult to
parametrise and assuming that no behavioural feedback
mechanisms exist is likely to lead to misleading estimates for
the effectiveness of disease surveillance programs. The
framework presented is inherently flexible, and could be
adapted to represent any given disease and surveillance
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system, as well as incorporating more detailed behavioural and
economic feedback effects as required. The example shown
here is deliberately simple, but illustrates how the approach
could be used in more complex situations. Detailed simulation
studies to quantify the sensitivity of the system to different
estimates for key parameters would also be highly beneficial,
and may identify key areas of knowledge deficit to be targeted
in future studies of farm behaviour.

Conclusions

This paper has identified a number of important behavioral
aspects involved in animal health surveillance systems,
revealing that the effectiveness of surveillance protocols
requires an appreciation of their systems context. The structure
of a novel framework was presented that shows how estimates
of prevalence can be significantly influenced by farmer
behavior, with ramifications on the effectiveness of

surveillance, disease spread, and resource allocation. The
framework presented has a variety of potential uses in disease
surveillance scenarios, as well as other applications in which
behavioural influences may be important.
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Figure 5.  The effect of incorporating farm heterogeneity and/or behavioural feedback mechanisms on the observed
prevalence of infected farms after a disease incursion event.  
doi: 10.1371/journal.pone.0082019.g005

Table 1. The average number of farms performing passive surveillance and total passive tests performed per time step.

Active surveillance effort Passive tests done Passive farms tested Total tests done Total farms tested
100 farms 1220 91 2220 191
10 farms 879 73 979 83
1 farm 764 64 774 65
0 farms 676 58 676 58

Note: results obtained from an agent based simulation of behavioural feedback mechanisms with farm heterogeneity including active surveillance of 100, 10, 1 and 0 farms
per time step, each with 10 tests per farm. Total tests done and farms tested incorporating both passive and active surveillance per time step also shown.
doi: 10.1371/journal.pone.0082019.t001
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