19 research outputs found

    Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance

    Get PDF
    Photo-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied. Low PAA doses were found to be effective in the inactivation of antibiotic resistant Escherichia coli (AR E. coli) in GW, with the UV-C process being faster (limit of detection (LOD) achieved for a cumulative energy (QUV) of 0.3 kJL−1 with 0.2 mg PAA L−1) than solar driven one (LOD achieved at QUV = 4.4 kJL−1 with 0.2 mg PAA L−1). Really fast inactivation rates of indigenous AR E. coli were also observed in WW. Higher QUV and PAA initial doses were necessary to effectively remove the three target CECs (carbamazepine (CBZ), diclofenac and sulfamethoxazole), with CBZ being the more refractory one. In conclusion, photo-driven AOP with PAA can be effectively used as tertiary treatment of urban wastewater but initial PAA dose should be optimized to find the best compromise between target bacteria inactivation and CECs removal as well as to prevent scavenging effect of PAA on hydroxyl radicals because of high PAA concentration

    EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems

    Get PDF
    Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10−4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA

    Reclamation of Real Urban Wastewater Using Solar Advanced Oxidation Processes: An Assessment of Microbial Pathogens and 74 Organic Microcontaminants Uptake in Lettuce and Radish

    Get PDF
    In this study, disinfection of urban wastewater (UWW) with two solar processes (H2O2 -20 mg/L and photo-Fenton 10 mg/L-Fe2+/20 mg/L-H2O2 at natural water pH) at pilot scale using a 60 L compound parabolic collector reactor for irrigation of two raw-eaten vegetables (lettuce and radish) has been investigated. Several microbial targets (total coliforms, Escherichia coli, Salmonella spp., and Enterococcus spp.) naturally occurring in UWW and 74 organic microcontaminants (OMCs) were monitored. Disinfection results showed no significant differences between both processes, showing the following inactivation resistance order: Salmonella spp. < E. coli < total coliforms < Enterococcus spp. Reductions of target microorganisms to concentrations below the limit of detection (LOD) was achieved in all cases with cumulative solar UV energy per volume (QUV) ranged from 12 to 40 kJ/L (90 min to 5 h). Solar photo-Fenton showed a reduction of 66% of OMCs and solar/H2O2 of 56% in 5 h treatment. Irrigation of radish and lettuce with solar treated effluents, secondary effluents, and mineral water was performed for 6 and 16 weeks, respectively. The presence of bacteria was monitored in surfaces and uptake of leaves, fruit, and also in soil. The bacterial concentrations detected were below the LOD in the 81.2% (lettuce) and the 87.5% (radish) of the total number of samples evaluated. Moreover, uptake of OMCs was reduced above 70% in crops irrigated with solar treated effluents in comparison with secondary effluents of UWW. © 2019 American Chemical Society

    Delay in diagnosis of influenza A (H1N1)pdm09 virus infection in critically ill patients and impact on clinical outcome

    Get PDF
    Background: Patients infected with influenza A (H1N1)pdm09 virus requiring admission to the ICU remain an important source of mortality during the influenza season. The objective of the study was to assess the impact of a delay in diagnosis of community-acquired influenza A (H1N1)pdm09 virus infection on clinical outcome in critically ill patients admitted to the ICU. Methods: A prospective multicenter observational cohort study was based on data from the GETGAG/SEMICYUC registry (2009–2015) collected by 148 Spanish ICUs. All patients admitted to the ICU in which diagnosis of influenza A (H1N1)pdm09 virus infection had been established within the first week of hospitalization were included. Patients were classified into two groups according to the time at which the diagnosis was made: early (within the first 2 days of hospital admission) and late (between the 3rd and 7th day of hospital admission). Factors associated with a delay in diagnosis were assessed by logistic regression analysis. Results: In 2059 ICU patients diagnosed with influenza A (H1N1)pdm09 virus infection within the first 7 days of hospitalization, the diagnosis was established early in 1314 (63.8 %) patients and late in the remaining 745 (36.2 %). Independent variables related to a late diagnosis were: age (odds ratio (OR) = 1.02, 95 % confidence interval (CI) 1.01–1.03, P < 0.001); first seasonal period (2009–2012) (OR = 2.08, 95 % CI 1.64–2.63, P < 0.001); days of hospital stay before ICU admission (OR = 1.26, 95 % CI 1.17–1.35, P < 0.001); mechanical ventilation (OR = 1.58, 95 % CI 1.17–2.13, P = 0.002); and continuous venovenous hemofiltration (OR = 1.54, 95 % CI 1.08–2.18, P = 0.016). The intra-ICU mortality was significantly higher among patients with late diagnosis as compared with early diagnosis (26.9 % vs 17.1 %, P < 0.001). Diagnostic delay was one independent risk factor for mortality (OR = 1.36, 95 % CI 1.03–1.81, P < 0.001). Conclusions: Late diagnosis of community-acquired influenza A (H1N1)pdm09 virus infection is associated with a delay in ICU admission, greater possibilities of respiratory and renal failure, and higher mortality rate. Delay in diagnosis of flu is an independent variable related to death

    Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array

    No full text
    International audienceCTA (Cherenkov Telescope Array) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. The Large-Sized Telescope prototype (\LST) is located at the Northern site of CTA, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to 20\simeq 20 GeV. \LST started performing astronomical observations in November 2019, during its commissioning phase, and it has been taking data since then. We present the first \LST observations of the Crab Nebula, the standard candle of very-high energy gamma-ray astronomy, and use them, together with simulations, to assess the basic performance parameters of the telescope. The data sample consists of around 36 hours of observations at low zenith angles collected between November 2020 and March 2022. \LST has reached the expected performance during its commissioning period - only a minor adjustment of the preexisting simulations was needed to match the telescope behavior. The energy threshold at trigger level is estimated to be around 20 GeV, rising to 30\simeq 30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.12 to 0.40 degrees, and energy resolution from 15 to 50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50-h observation (12% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula

    Observations of the Crab Nebula and Pulsar with the Large-Sized Telescope Prototype of the Cherenkov Telescope Array

    No full text
    International audienceCTA (Cherenkov Telescope Array) is the next generation ground-based observatory for gamma-ray astronomy at very-high energies. The Large-Sized Telescope prototype (\LST) is located at the Northern site of CTA, on the Canary Island of La Palma. LSTs are designed to provide optimal performance in the lowest part of the energy range covered by CTA, down to 20\simeq 20 GeV. \LST started performing astronomical observations in November 2019, during its commissioning phase, and it has been taking data since then. We present the first \LST observations of the Crab Nebula, the standard candle of very-high energy gamma-ray astronomy, and use them, together with simulations, to assess the basic performance parameters of the telescope. The data sample consists of around 36 hours of observations at low zenith angles collected between November 2020 and March 2022. \LST has reached the expected performance during its commissioning period - only a minor adjustment of the preexisting simulations was needed to match the telescope behavior. The energy threshold at trigger level is estimated to be around 20 GeV, rising to 30\simeq 30 GeV after data analysis. Performance parameters depend strongly on energy, and on the strength of the gamma-ray selection cuts in the analysis: angular resolution ranges from 0.12 to 0.40 degrees, and energy resolution from 15 to 50%. Flux sensitivity is around 1.1% of the Crab Nebula flux above 250 GeV for a 50-h observation (12% for 30 minutes). The spectral energy distribution (in the 0.03 - 30 TeV range) and the light curve obtained for the Crab Nebula agree with previous measurements, considering statistical and systematic uncertainties. A clear periodic signal is also detected from the pulsar at the center of the Nebula
    corecore