21 research outputs found

    Tertiary treatment of urban wastewater by solar and UV-C driven advanced oxidation with peracetic acid: effect on contaminants of emerging concern and antibiotic resistance

    Get PDF
    Photo-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied. Low PAA doses were found to be effective in the inactivation of antibiotic resistant Escherichia coli (AR E. coli) in GW, with the UV-C process being faster (limit of detection (LOD) achieved for a cumulative energy (QUV) of 0.3 kJL−1 with 0.2 mg PAA L−1) than solar driven one (LOD achieved at QUV = 4.4 kJL−1 with 0.2 mg PAA L−1). Really fast inactivation rates of indigenous AR E. coli were also observed in WW. Higher QUV and PAA initial doses were necessary to effectively remove the three target CECs (carbamazepine (CBZ), diclofenac and sulfamethoxazole), with CBZ being the more refractory one. In conclusion, photo-driven AOP with PAA can be effectively used as tertiary treatment of urban wastewater but initial PAA dose should be optimized to find the best compromise between target bacteria inactivation and CECs removal as well as to prevent scavenging effect of PAA on hydroxyl radicals because of high PAA concentration

    EMA-amplicon-based sequencing informs risk assessment analysis of water treatment systems

    Get PDF
    Illumina amplicon-based sequencing was coupled with ethidium monoazide bromide (EMA) pre-treatment to monitor the total viable bacterial community and subsequently identify and prioritise the target organisms for the health risk assessment of the untreated rainwater and rainwater treated using large-volume batch solar reactor prototypes installed in an informal settlement and rural farming community. Taxonomic assignments indicated that Legionella and Pseudomonas were the most frequently detected genera containing opportunistic bacterial pathogens in the untreated and treated rainwater at both sites. Additionally, Mycobacterium, Clostridium sensu stricto and Escherichia/Shigella displayed high (≥80%) detection frequencies in the untreated and/or treated rainwater samples at one or both sites. Numerous exposure scenarios (e.g. drinking, cleaning) were subsequently investigated and the health risk of using untreated and solar reactor treated rainwater in developing countries was quantified based on the presence of L. pneumophila, P. aeruginosa and E. coli. The solar reactor prototypes were able to reduce the health risk associated with E. coli and P. aeruginosa to below the 1 × 10−4 annual benchmark limit for all the non-potable uses of rainwater within the target communities (exception of showering for E. coli). However, the risk associated with intentional drinking of untreated or treated rainwater exceeded the benchmark limit (E. coli and P. aeruginosa). Additionally, while the solar reactor treatment reduced the risk associated with garden hosing and showering based on the presence of L. pneumophila, the risk estimates for both activities still exceeded the annual benchmark limit. The large-volume batch solar reactor prototypes were thus able to reduce the risk posed by the target bacteria for non-potable activities rainwater is commonly used for in water scarce regions of sub-Saharan Africa. This study highlights the need to assess water treatment systems in field trials using QMRA

    Reclamation of Real Urban Wastewater Using Solar Advanced Oxidation Processes: An Assessment of Microbial Pathogens and 74 Organic Microcontaminants Uptake in Lettuce and Radish

    Get PDF
    In this study, disinfection of urban wastewater (UWW) with two solar processes (H2O2 -20 mg/L and photo-Fenton 10 mg/L-Fe2+/20 mg/L-H2O2 at natural water pH) at pilot scale using a 60 L compound parabolic collector reactor for irrigation of two raw-eaten vegetables (lettuce and radish) has been investigated. Several microbial targets (total coliforms, Escherichia coli, Salmonella spp., and Enterococcus spp.) naturally occurring in UWW and 74 organic microcontaminants (OMCs) were monitored. Disinfection results showed no significant differences between both processes, showing the following inactivation resistance order: Salmonella spp. < E. coli < total coliforms < Enterococcus spp. Reductions of target microorganisms to concentrations below the limit of detection (LOD) was achieved in all cases with cumulative solar UV energy per volume (QUV) ranged from 12 to 40 kJ/L (90 min to 5 h). Solar photo-Fenton showed a reduction of 66% of OMCs and solar/H2O2 of 56% in 5 h treatment. Irrigation of radish and lettuce with solar treated effluents, secondary effluents, and mineral water was performed for 6 and 16 weeks, respectively. The presence of bacteria was monitored in surfaces and uptake of leaves, fruit, and also in soil. The bacterial concentrations detected were below the LOD in the 81.2% (lettuce) and the 87.5% (radish) of the total number of samples evaluated. Moreover, uptake of OMCs was reduced above 70% in crops irrigated with solar treated effluents in comparison with secondary effluents of UWW. © 2019 American Chemical Society

    Evaluation of transparent 20l polypropylene buckets for household solar water disinfection (SoDis) of drinking water in resource poor environments

    No full text
    Solar water disinfection (SODIS) is an appropriate technology for treating drinking water in developing communities, as it is e¬ective, low- or zero-cost, easy to use. The WHO recognises SODIS as an appropriate intervention to provide drinking water after manmade or natural disasters. Nevertheless, uptake is low due partially to the burden of using small volume polyethylene terephthalate (PET) bottles (1.5-2 L). A major challenge is to develop a low cost transparent container for disinfecting larger volumes of water. This study examines the capability of transparent polypropylene (PP) buckets of 5 and 20 litres volume, as SODIS containers using three waterborne pathogen indicator organisms: E. coli, MS2-phage and Cryptosporidium parvum oocysts

    Design and evaluation of large volume transparent plastic containers for water remediation by solar disinfection

    No full text
    Solar water disinfection (SODIS) is a household drinking water treatmentwith a number of well-known benefits such as simplicity, efficiency and low cost. It consists of solar exposure of water stored in transparent containers (1–2 L) to direct sunlight for at least 6 hours, producing water that is safe for drinking. During recent years, much effort has been directed by the scientific community to increase the batch volume of treated water delivered by SODIS with the main objective of reducing the risk of waterborne disease in communities in resource-poor settings. In this context, this chapter reviews the latest research on the evaluation of common and novel materials employed for the design of larger-volume transparent containers (420 L) to be used for SODIS. The container design and performance of the materials developed are described from different perspectives, including microbial inactivation (bacteria, viruses and protozoan parasites), mathematical modelling of the microbicidal capacity of the container material based on optical characteristics, their lifespan and stability under natural sunlight as well as field experiences for implementation

    Good optical transparency is not an essential requirement for effective solar water disinfection (SODIS) containers

    No full text
    The efficacy of 10 L polypropylene (PP) transparent jerry cans (TJCs) to inactivate E. coli, MS2-phage and Cryptosporidium parvum via solar water disinfection (SODIS) was tested in well water or general test water under natural sunlight. Food-safe PP was used to manufacture the TJCs and a clarifying agent was added to improve optical transparency in the UV–visible range. 10 L PP TJCs and 2 L polyethylene terephthalate (PET) bottles were filled with well water, spiked separately with (~106 CFU/mL of E. coli, ~106 PFU/mL of MS2 phage and 5 ×105C. parvum oocysts per litre) and exposed to natural sunlight for 6 h. While the 10 L PP TJC prototype had poorer transparency (UV-B 0.001%, UV-A 4.29%, and visible 92% for TJCs without clarifier and UV-B 1.36%,UV-A 8.01%, and visible 90.01% for TJCs with clarifier) than standard 2 L PET (UV-B 0.72%, UV-A 10–85%, and visible 80–90%); log reduction values (LRVs) > 5, 2 and 0.8 for E. coli, MS2-phage, and C. parvum, respectively, were observed for the TJCs within six hours respectively, which is a minimum standard for drinking water established by the World Health Organisation (WHO). We observed similar inactivation kinetics for all three organisms in PP TJCs and PET bottles despite the poorer optical transparency properties of the SODIS jerry cans. Therefore, for effective SODIS, container optical transparency is not as important as previously believed. We conclude that good visible transparency is not a necessary requirement for containers intended for SODIS use
    corecore