165 research outputs found

    Assessing the potential for crop albedo enhancement in reducing heatwave frequency, duration, and intensity under future climate change

    Get PDF
    Adapting to the impacts of future warming, and in particular the impacts of heatwaves, is an increasingly important challenge. One proposed strategy is land-surface radiation management via crop albedo enhancement. This has been argued to be an effective method of reducing daily hot temperature extremes regionally. However, the influence of crop albedo enhancement on heatwave events, which last three or more days, is yet to be explored and this remains an important knowledge gap. Using a fully coupled earth system model with 10 ensemble members, we show that crop albedo enhancement by up to 0.1 reduces the frequency of heatwave days over Europe and North America by 10 to 20 days; with a larger reduction over Europe under a future climate driven by SSP2-4.5. The average temperature anomaly during heatwaves (the magnitude of the event), is reduced by 0.8 °C to 1.2 °C where the albedo was enhanced, but reductions in mean heatwave duration are limited. There was a marked reduction in the mean annual cumulative heatwave intensity across most of Eurasia and North America, ranging from 32 °C to as high as 80 °C in parts of southern Europe. These changes were largely driven by a reduction in net radiation, decreasing the sensible heat flux, which reduces the maximum temperature, and therefore, heatwave frequency and intensity. These changes were largely localised to where the albedo enhancement was applied with no significant changes in atmospheric circulation or precipitation, which presents advantages for implementation. While our albedo perturbation of up to 0.1 is large and represents the likely upper limit of what is possible with more reflective crops, and we assume that more reflective crops are grown everywhere and instantly, these results provide useful guidance to policy makers and farmers on the maximum possible benefits of using more reflective crops in limiting the impacts of heatwaves under future climate

    Representation of climate extreme indices in the ACCESS1.3b coupled atmosphere–land surface model

    Get PDF
    Climate extremes, such as heat waves and heavy precipitation events, have large impacts on ecosystems and societies. Climate models provide useful tools for studying underlying processes and amplifying effects associated with extremes. The Australian Community Climate and Earth System Simulator (ACCESS) has recently been coupled to the Community Atmosphere Biosphere Land Exchange (CABLE) model. We examine how this model represents climate extremes derived by the Expert Team on Climate Change Detection and Indices (ETCCDI) and compare them to observational data sets using the AMIP framework. We find that the patterns of extreme indices are generally well represented. Indices based on percentiles are particularly well represented and capture the trends over the last 60 years shown by the observations remarkably well. The diurnal temperature range is underestimated, minimum temperatures (TMIN) during nights are generally too warm and daily maximum temperatures (TMAX) too low in the model. The number of consecutive wet days is overestimated, while consecutive dry days are underestimated. The maximum consecutive 1-day precipitation amount is underestimated on the global scale. Biases in TMIN correlate well with biases in incoming longwave radiation, suggesting a relationship with biases in cloud cover. Biases in TMAX depend on biases in net shortwave radiation as well as evapotranspiration. The regions and season where the bias in evapotranspiration plays a role for the TMAX bias correspond to regions and seasons where soil moisture availability is limited. Our analysis provides the foundation for future experiments that will examine how land-surface processes contribute to these systematic biases in the ACCESS modelling system

    Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Get PDF
    Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various Pfractions also determined. Physical properties were also examined and an index of soil physical quality developed. Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate. A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale

    Integrated global assessment of the natural forest carbon potential

    Get PDF
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2,3,4,5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151–363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets

    Search for single vector-like B quark production and decay via B → bH(b¯b) in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for single production of a vector-like B quark decaying into a Standard Model b-quark and a Standard Model Higgs boson, which decays into a b¯b pair. The search is carried out in 139 fb−1 of √s = 13 TeV proton-proton collision data collected by the ATLAS detector at the LHC between 2015 and 2018. No significant deviation from the Standard Model background prediction is observed, and mass-dependent exclusion limits at the 95% confidence level are set on the resonance production cross-section in several theoretical scenarios determined by the couplings cW, cZ and cH between the B quark and the Standard Model W, Z and Higgs bosons, respectively. For a vector-like B occurring as an isospin singlet, the search excludes values of cW greater than 0.45 for a B resonance mass (mB) between 1.0 and 1.2 TeV. For 1.2 TeV < mB < 2.0 TeV, cW values larger than 0.50–0.65 are excluded. If the B occurs as part of a (B, Y) doublet, the smallest excluded cZ coupling values range between 0.3 and 0.5 across the investigated resonance mass range 1.0 TeV < mB < 2.0 TeV

    Search for third-generation vector-like leptons in pp collisions at s√ = 13 TeV with the ATLAS detector

    Get PDF
    A search for vector-like leptons in multilepton (two, three, or four-or-more electrons plus muons) final states with zero or more hadronic τ-lepton decays is presented. The search is performed using a dataset corresponding to an integrated luminosity of 139 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the LHC. To maximize the separation of signal and background, a machine-learning classifier is used. No excess of events is observed beyond the Standard Model expectation. Using a doublet vector-like lepton model, vector-like leptons coupling to third-generation Standard Model leptons are excluded in the mass range from 130 GeV to 900 GeV at the 95% confidence level, while the highest excluded mass is expected to be 970 GeV

    Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for diphoton resonances in the mass range between 10 and 70 GeV with the ATLAS experiment at the Large Hadron Collider (LHC) is presented. The analysis is based on pp collision data corresponding to an integrated luminosity of 138 fb−1 at a centre-of-mass energy of 13 TeV recorded from 2015 to 2018. Previous searches for diphoton resonances at the LHC have explored masses down to 65 GeV, finding no evidence of new particles. This search exploits the particular kinematics of events with pairs of closely spaced photons reconstructed in the detector, allowing examination of invariant masses down to 10 GeV. The presented strategy covers a region previously unexplored at hadron colliders because of the experimental challenges of recording low-energy photons and estimating the backgrounds. No significant excess is observed and the reported limits provide the strongest bound on promptly decaying axion-like particles coupling to gluons and photons for masses between 10 and 70 GeV

    Evidence for the charge asymmetry in pp → tt¯ production at s√ = 13 TeV with the ATLAS detector

    Get PDF
    Inclusive and differential measurements of the top–antitop (ttÂŻ) charge asymmetry AttÂŻC and the leptonic asymmetry Aℓℓ¯C are presented in proton–proton collisions at s√ = 13 TeV recorded by the ATLAS experiment at the CERN Large Hadron Collider. The measurement uses the complete Run 2 dataset, corresponding to an integrated luminosity of 139 fb−1, combines data in the single-lepton and dilepton channels, and employs reconstruction techniques adapted to both the resolved and boosted topologies. A Bayesian unfolding procedure is performed to correct for detector resolution and acceptance effects. The combined inclusive ttÂŻ charge asymmetry is measured to be AttÂŻC = 0.0068 ± 0.0015, which differs from zero by 4.7 standard deviations. Differential measurements are performed as a function of the invariant mass, transverse momentum and longitudinal boost of the ttÂŻ system. Both the inclusive and differential measurements are found to be compatible with the Standard Model predictions, at next-to-next-to-leading order in quantum chromodynamics perturbation theory with next-to-leading-order electroweak corrections. The measurements are interpreted in the framework of the Standard Model effective field theory, placing competitive bounds on several Wilson coefficients
    • 

    corecore