1,291 research outputs found

    The Effect of Large Amplitude Fluctuations in the Ginzburg-Landau Phase Transition

    Full text link
    The lattice Ginzburg-Landau model in d=3 and d=2 is simulated, for different values of the coherence length ξ\xi in units of the lattice spacing aa, using a Monte Carlo method. The energy, specific heat, vortex density vv, helicity modulus Γμ\Gamma_\mu and mean square amplitude are measured to map the phase diagram on the plane TξT-\xi. When amplitude fluctuations, controlled by the parameter ξ\xi, become large (ξ1\xi \sim 1) a proliferation of vortex excitations occurs changing the phase transition from continuous to first order.Comment: 4 pages, 5 postscript (eps) figure

    Tuberculosis vaccine candidates based on mycobacterial cell envelope components

    Get PDF
    Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.Fil: Sarmiento, M.E.. Universiti Sains Malaysia; MalasiaFil: Alvarez, N.. Public Health Research Institute; Estados UnidosFil: Chin, K.L.. Universiti Sains Malaysia; MalasiaFil: Bigi, Fabiana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Agrobiotecnología y Biología Molecular. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Agrobiotecnología y Biología Molecular; ArgentinaFil: Tirado, Y.. No especifíca;Fil: García, M.A.. No especifíca;Fil: Anis, F.Z.. Universiti Sains Malaysia; MalasiaFil: Norazmi, M.N.. Universiti Sains Malaysia; MalasiaFil: Acosta, A.. Universiti Sains Malaysia; Malasi

    Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility

    Get PDF
    AbstractCalcium looping, CaL, is a new and rapidly developing technology that makes use of CaO as a high temperature regenerable sorbent of CO2. Previous theoretical and lab scale studies have shown that this technology could lead to a substantial reduction in the cost of CO2 capture and energy penalties because heat can be effectively recovered from this high temperature solid looping system. We report in this paper on the first results from a pilot plant designed to demonstrate the viability of postcombustion capture of CO2 using CaL under conditions comparable to those expected in a large scale plant. The pilot includes two interconnected circulating fluidized bed reactors of 15 m height: a CO2 absorber (carbonator) able to treat up to 2400kg/h (equivalent to about 1.7 MWth), and an oxy-fired CFB calciner with a firing power between 1-3 MWth. CO2 capture efficiencies over 90% have been experimentally observed, including continuous operation with highly cycled solids in the system (i.e. with modest CO2 carrying capacities). SO2 capture is shown to be extremely high, with concentrations of SO2 well below 10 ppmv at the exit of the carbonator. Closure of carbon and sulfur balances is satisfactory. These results should be valuable base for model validation and scaling up purposes in future stages of the EU FP7 “CaOling” project, under which this investigation has been carried out

    The critical Ising model via Kac-Ward matrices

    Full text link
    The Kac-Ward formula allows to compute the Ising partition function on any finite graph G from the determinant of 2^{2g} matrices, where g is the genus of a surface in which G embeds. We show that in the case of isoradially embedded graphs with critical weights, these determinants have quite remarkable properties. First of all, they satisfy some generalized Kramers-Wannier duality: there is an explicit equality relating the determinants associated to a graph and to its dual graph. Also, they are proportional to the determinants of the discrete critical Laplacians on the graph G, exactly when the genus g is zero or one. Finally, they share several formal properties with the Ray-Singer \bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version

    Off Equilibrium Study of the Fluctuation-Dissipation Relation in the Easy-Axis Heisenberg Antiferromagnet on the Kagome Lattice

    Full text link
    Violation of the fluctuation-dissipation theorem (FDT) in a frustrated Heisenberg model on the Kagome lattice is investigated using Monte Carlo simulations. The model exhibits glassy behaviour at low temperatures accompanied by very slow dynamics. Both the spin-spin autocorrelation function and the response to an external magnetic field are studied. Clear evidence of a constant value of the fluctuation dissipation ratio and long range memory effects are observed for the first time in this model. The breakdown of the FDT in the glassy phase follows the predictions of the mean field theory for spin glasses with one-step replica symmetry breaking.Comment: 4 pages, 4 figure

    Improvement of diaphragmatic performance through orthotopic application of decellularized extracellular matrix patch.

    Get PDF
    AbstractMuscle tissue engineering can provide support to large congenital skeletal muscle defects using scaffolds able to allow cell migration, proliferation and differentiation. Acellular extracellular matrix (ECM) scaffold can generate a positive inflammatory response through the activation of anti-inflammatory T-cell populations and M2 polarized macrophages that together lead to a local pro-regenerative environment. This immunoregulatory effect is maintained when acellular matrices are transplanted in a xenogeneic setting, but it remains unclear whether it can be therapeutic in a model of muscle diseases. We demonstrated here for the first time that orthotopic transplantation of a decellularized diaphragmatic muscle from wild animals promoted tissue functional recovery in an established atrophic mouse model. In particular, ECM supported a local immunoresponse activating a pro-regenerative environment and stimulating host muscle progenitor cell activation and migration. These results indicate that acellular scaffolds may represent a suitable regenerative medicine option for improving performance of diseased muscles

    Neutralino-Nucleon Cross Section and Charge and Colour Breaking Constraints

    Full text link
    We compute the neutralino-nucleon cross section in several supersymmetric scenarios, taking into account all kind of constraints. In particular, the constraints that the absence of dangerous charge and colour breaking minima imposes on the parameter space are studied in detail. In addition, the most recent experimental constraints, such as the lower bound on the Higgs mass, the bsγb\to s\gamma branching ratio, and the muon g2g-2 are considered. The astrophysical bounds on the dark matter density are also imposed on the theoretical computation of the relic neutralino density, assuming thermal production. This computation is relevant for the theoretical analysis of the direct detection of dark matter in current experiments. We consider first the supergravity scenario with universal soft terms and GUT scale. In this scenario the charge and colour breaking constraints turn out to be quite important, and \tan\beta\lsim 20 is forbidden. Larger values of tanβ\tan\beta can also be forbidden, depending on the value of the trilinear parameter AA. Finally, we study supergravity scenarios with an intermediate scale, and also with non-universal scalar and gaugino masses where the cross section can be very large.Comment: Final version to appear in JHE

    Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile

    Get PDF
    Molecular basis of bacterial pathogenesis, virulence factors and antibiotic resistanc
    corecore