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Tuberculosis vaccine candidates based on mycobacterial cell envelope components. 1 

Abstract 2 

Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is 3 

still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a 4 

microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure 5 

and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that 6 

allows it to modulate the immune response in its favor and to adapt to the host’s environmental conditions in order to 7 

remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid 8 

components have been the subject of interest for developing new vaccines because most of them are responsible for 9 

the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal 10 

antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid 11 

extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging 12 

results, to evaluate the potential of these antigens in the protective response against Mtb.  13 

Keywords: vesicles, cell wall, membrane, vaccines, Mycobacterium tuberculosis 14 

1.0. Introduction 15 

Despite establishing Mycobacterium tuberculosis (Mtb) as the causative agent for tuberculosis (TB) and the 16 

availability of a live vaccine for its prevention since the beginning of the past century, the disease continues to claim 17 

more than a million lives each year (1, 2).  18 

Bacille Calmette Guerin (BCG), the current vaccine against TB protects against miliary and meningeal TB in children 19 

but its protection against pulmonary TB (PTB) in adults is questionable. The pulmonary form of the disease is the 20 

most common form and is primarily responsible for disease transmission (3-5). BCG generally show high and 21 

consistent efficacy in the developed world, but in contrast, its effect in developing countries has been far from 22 

successful (3-5). 23 

Mtb uses diverse strategies to survive in a variety of host environments and to evade the host´s immune response 24 

(IR) (2). The nature of Mtb envelope confers to the bacilli strong resistance to degradation by host enzymes, 25 

impermeability to toxic macromolecules and extreme hydrophobicity (6, 7). Molecules expressed on the 26 

mycobacterial cell envelope (CE) mediate the interactions between Mtb and the host, its recognition by host cell 27 

receptors is crucial to influence the type of the ensuing innate immune response, which will in turn determine the 28 

subsequent specific immune response against the bacteria (6, 7). 29 

Considering the relevant role of the CE in the infection process and its outcome, the use of its components as 30 

adjuvants and/or targets for vaccine development has dominated the efforts for the development of new generation 31 

vaccines against TB (8). In this review, we will discuss on Mtb CE components (CEC) and their potential for the 32 

development of new vaccine candidates (VCs). 33 

2.0. Mtb CE. Structural organization and components. 34 

Mtb CE is a complex structure, formed by three main layers: 1) capsule, 2) cell wall (CW) and, 3) plasmatic 35 

membrane (9). 36 
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About 40% of the CE dry mass is represented by lipids (10), and 90% of the subclasses of mycobacterial lipids are 37 

molecularly distinct from humans and other prokaryotes (7, 11). This unique CE composition and organization is 38 

believed to render mycobacteria less susceptible than other bacterial pathogens to various antibiotic classes, and 39 

provide protection against oxidative radicals and desiccation resistance, in addition to the possibility to manipulate 40 

the host immune system (12-14). 41 

2.1. Capsule. Mtb capsule is an external carbohydrate-enriched layer that contains proteins, polysaccharides and 42 

low quantity of lipids (9). It confers protection to mycobacteria against several external factors, such as 43 

antimicrobial agents, and has a direct interaction with the elements of the IR (6, 7, 9-15). The proteins 44 

embedded in the capsule are involved in the synthesis and maintenance of the CE, and together with some of 45 

the capsular glycans, are responsible for adhesion, penetration, infection and survival of mycobacteria in the 46 

host cells (16). The capsule also serves as a passive barrier by impeding the diffusion of macromolecules 47 

towards the inner parts of the envelope (16). Additionally, secreted enzymes are identified which are potentially 48 

associated with the detoxification of reactive oxygen intermediates such as catalase/peroxidase and superoxide 49 

dismutase, related with the active resistance of the mycobacteria to the host´s microbicidal mechanisms (16). In 50 

addition, some toxic lipids, lytic substances and capsular constituents causes immunopathology during Mtb 51 

infection by inhibiting both macrophage-priming and lymphoproliferation (16).  52 

Stokes and colleagues demonstrated that the capsule of the Mtb family members could limit the interaction of 53 

the bacteria with macrophages in the absence of serum opsonins, thereby reducing and/or regulating the uptake 54 

of bacteria by the phagocytes (17). A previous study with a Mtb strain mutated in the polyketide synthase gene 55 

msl3 with deficit in lipoglycans diacyltrehalose and polyacyltrehalose, showed alteration in the attachment of the 56 

capsule of the mutant (18). 57 

Two of the most abundant components of the Mtb capsule are the 19-kDa glycoprotein and the antigen 85 58 

complex (19). The 19-kDa secreted lipoglycoprotein (Rv3763; LpqH) is an abundantly expressed CE-associated 59 

and secreted glycolipoprotein (20). Henao-Tamayo et al, showed that the 19-kDa lipoprotein is essential for the 60 

replication of Mtb in the lungs of normal and immunocompromised mice in an aerosol infection model, while 61 

mutant Mtb, which lacks the protein, allows the bacilli to persist as a low-grade chronic infection (21). On the 62 

other hand, the Ag85 complex which includes three proteins: Ag85A (31-kDa), Ag85B or α-antigen (30-kDa), 63 

and Ag85C (31.5-kDa), represent the most common Mtb proteins secreted into culture fluids (22). The role of 64 

the Ag85 complex in the pathogenesis and virulence of Mtb is widely studied and the main described 65 

mechanisms include binding to fibronectin and inhibition of phagosome maturation in macrophages (22). 66 

2.2. Cell Wall. Mtb CW is different from other prokaryotes as it is composed of two segments, i.e. upper (outer 67 

membrane) and lower (CW core). The lower segment functions as a central axis, integrated by peptidoglycans 68 

covalently attached to arabinogalactan via phosphoryl-N-acetyl-glucosaminosyl-rhamnosyl linkage, which in turn 69 

esterified to mycolic acids (α-alkyl, β-hydroxy long chain fatty acids) and formed mycolyl arabinogalactan-70 

peptidoglycan (mAGP), better known as the CW core (6). While the upper segment (outer membrane) 71 

comprises free lipids, proteins, phosphatidylinositol mannosides (PIMs), phthiocerol-containing lipids, 72 

lipomannan (LM) and lipoarabinomannan (LAM) (6), which is the major component of the outer membrane (23, 73 

24). 74 
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Previous studies showed that PIMs, LM and LAM have potent immunomodulatory and immunopathogenic 75 

activities during mycobacterial phagocytosis, macrophage activation and macrophage microbicidal mechanisms 76 

via regulation of cytokine production and secretion. Due to its high solubility, these lipids and proteins are 77 

important molecules for signaling during disease, while the insoluble CW core is important to maintain cell 78 

viability and a robust basal structure supporting the outer “myco-membrane” (outer membrane) (6, 25). This 79 

outer membrane is especially hydrophobic since it is rich in mycolic acids, phospholipids and cord-factor (12). 80 

The so-called “cord-factors” are the best-known mycolic acids esters in mycobacteria, principally trehalose-6,6-81 

dimycolate (TDM) and trehalose monomycolate (TMM) (26). 82 

TDM is the most abundant lipid released by Mtb, which have multiple functions in the pathogenesis of primary, 83 

secondary and cavitary TB (27). In primary TB, TDM interacts with lipids within granulomas to form caseating 84 

granulomas and in secondary TB, the accumulation of mycobacterial Ags and host lipids in alveoli promotes the 85 

activation of toxicity and antigenicity of TDM which rapidly leads to caseation necrosis and formation of cavities 86 

(27). TDM hinder the elicitation of an effective IR through the promotion of a detrimental pro-inflammatory 87 

cytokine production, the persistence of the mycobacteria inside macrophages and retarding the phagosome 88 

maturation (21). Phthiocerol dimycocerosates (PDIMs) are the most abundant mycobacterial lipids, which is 89 

non-covalently attached to the CW skeleton (10). They are the only non-amphipathic lipids produced by this 90 

organism and they play an important structural role in providing a stable base for insertion of other lipids (10). 91 

They could also act as a fluidity modifier, modulating the CW viscosity (28). Thus, PDIMs may affect the 92 

organization of the host membrane which favor receptor-mediated-phagocytosis of Mtb and prevent the 93 

phagosomal acidification which enable Mtb to survive in a protective niche (29). The escape of Mtb from the 94 

phagosome has been postulated to be linked to the presence of PDIMs which induce cell necrosis and Mtb 95 

dissemination (30). Across the CW there are embedded proteins which are abundantly expressed in Mtb and 96 

associated with the other components of this structure, e.g. the 19 kDa lipoprotein and 71 kDa protein which 97 

have been studied as potential VCs for TB (8, 31). Overall, the unusually high mycolic acid content, together 98 

with a variety of cell surface polysaccharides and other intercalated lipids such as sulfolipids (SLs) contribute to 99 

the wall’s limited permeability, it’s virulence and resistance to therapeutic agents (7, 28).  100 

The CW of Mtb is a well-equipped frame that protects this pathogen from unfavorable environments (32). 101 

Peptidoglycan is a complex polymer described as essential component of the bacterial CW (33). Recently, the 102 

role of two enzymes, RodA and PbpA, which are required for the structural shape of Mtb peptidoglycan were 103 

elucidated (33). Both enzymes are required for regulating cell length, without affecting mycobacterial growth and 104 

in the guinea pig infection model, RodA and PbpA are also essential for bacterial survival and formation of 105 

granuloma, suggesting that these proteins may be involved in virulence and as a consequence, in the survival of 106 

Mtb inside the host (33). 107 

Mtb is a pathogen characterized by the export of large quantities of proteins during its growing process. One of 108 

the major extracellular proteins is the glutamine synthetase, an enzyme related with the presence of a poly-L-109 

glutamate component in the CW (34). Since poly-L-glutamate is absent in non-pathogenic mycobacteria (35), 110 

the presence of glutamine synthetase has been suggested to be important in mycobacterial virulence. (34), 111 

The α/β hydrolases constitute a powerful family of enzymes in Mtb associated with lipid metabolism, with their 112 

key role in the biosynthesis and maintenance of the pathogen’s CE. They have also been associated with Mtb 113 

evasion and modulation of the host IR, as well as, with mycobacterial growth, response to hostile environments 114 
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and latency (36). A cholesterol ring-cleaving hydrolase, IpdAB, is an important virulence factor implicated in Mtb 115 

pathogenesis (37) since the virulence and persistence of this pathogen is related to its ability to degrade host-116 

derived lipids, including cholesterol (37). IpdAB is also essential for Mtb growth in macrophages based on 117 

transposon mapping (38) and through using deletion mutants of the enzyme (39). 118 

LytR-CpsA-Psr (LCP) is a protein domain with an important role on bacterial CW synthesis, specifically related 119 

to the transference of arabinogalactan to peptidoglycan. In a previous study using single mutants in the genes 120 

encoding these Mtb proteins, it was demonstrated that these genes are important for mycobacterial growth and 121 

antibiotic susceptibility (40).  122 

Hydrolase Important for Pathogenesis-1 (Hip1) is another CW related protein with an important function on Mtb 123 

virulence (41). The catalytic activity of Hip1 on the host IR was demonstrated using a Hip1-knockout strain, 124 

which induced an increased proinflammatory response in both macrophages and neutrophils compared to the 125 

wild type (42). 126 

2.3. Plasmatic membrane. Plasmatic membrane, also known as cytoplasmic membrane, is composed of a 127 

phospholipid bilayer containing cardiolipin, phosphatidylethanolamine and phosphatidylinositol, which is similar 128 

to the rest of prokaryotes. However, in mycobacteria the phospholipid derivatives are highly glycosylated (9). 129 

Mtb can be distinguished by a genus-specific, C19 fatty acid, known as tuberculostearic acid (15). It appears 130 

that the mycobacterial plasmatic membrane plays a limited role in pathogenicity and its main function is 131 

maintenance of the influx-efflux equilibrium (11, 16). 132 

3.0. Role of Mtb CE in virulence 133 

Mtb CEC constitute the major determinants of mycobacterial virulence. Being present at the interface between the 134 

microorganism and the host, the components of the mycobacterial CE are responsible in targeting host–pathogen 135 

interactions (43). The expression of genetic determinants involved in the interaction between the microorganism and 136 

the host, have been demonstrated to influence the ability of a bacterial pathogen to survive inside the host (44). This 137 

mechanism results in the possibility of pathogens to resist physiological and environmental stress (44). The virulence 138 

of Mtb also depends on the genes responsible for the processes of biosynthesis, degradation and transport of the CE 139 

(45). 140 

There are many virulence factors which have evolved in the Mtb complex members as a response to the IR (45). The 141 

CE contains unique lipids and glycolipids that render extreme hydrophobicity to the outer surface. These lipids which 142 

include mycolic acids, phosphatidyl inositol mannosides, PDIMs and lipoglycans such as LM and LAM play important 143 

roles in maintaining integrity of the CE and are involved in the pathogenicity of mycobacteria (46, 47). 144 

Mycolic acids are the hallmark of the CE of Mtb which create a special lipid barrier with their perpendicular orientation 145 

relative to the plane of the membrane (6). These components affect the permeability of the CE and the ability of Mtb 146 

to form biofilms (48). Furthermore, it is essential for the survival of mycobacteria and promote the pathogenicity 147 

during infection (49). Different studies have reported that the disruption of the mycolic acids synthesis pathway or 148 

alteration of their structure, affect the virulence of mycobacteria (50). 149 

LAM is a major virulence factor associated with Mtb since it allows the mycobacteria to survive in the host cell 150 

environment by altering host resistance and IR (51). LAM inhibits phagosomal maturation in the host cell and 151 

contributes to the inhibition of macrophage functions (52-55). 152 
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TDM or cord factor is another virulence factor produced abundantly in virulent strains of Mtb (27, 56, 57). TDM blocks 153 

the phagosome-lysosome fusion and migration of polymorphonuclear neutrophils (27, 56, 57). It contributes to the 154 

maintenance of the granulomatous response and the long term survival of Mtb in host cells (27, 56, 57). 155 

Accumulation of TDM causes weight loss in the host, resulting in the condition known as cachexia (58). The 156 

cyclopropane modification of TDM in virulent Mtb strains increase the inflammatory activity upon Mtb recognition by 157 

effectors of the innate IR, promoting the Mtb virulence through the manipulation of immune activation (59).  158 

Previous studies showed that PDIM of Mtb are involved in macrophage invasion, inducing changes in the 159 

organization of plasma membrane lipids (6, 29, 30). Regarding other components of the Mtb CE, the production of 160 

phenolic glycolipids in Mtb is associated with the hyper-virulent phenotype displayed by a subset of Mtb isolates. 161 

There is also a clear correlation between the presence of sulfolipids in Mtb isolates and virulence in guinea pigs (60, 162 

61).  163 

4.0. Indirect evidences of the protective role of Mtb CEC 164 

Studies with polyclonal (pAbs) and monoclonal antibodies (mAbs), which challenged the traditional dogma of the 165 

exclusive role of cellular immunity in the defense against Mtb, had been very important in providing indirect evidence 166 

of the potential role of Mtb CEC in the protection against Mtb (62). 167 

The first study describing a beneficial effect of the administration of mAbs directed to mycobacterial CEC on the 168 

course of Mtb infection was conducted with the mAb 9d8 (IgG3) that recognizes AM exclusively (63). This mAb, 169 

increased the survival of intratracheally-infected mice when the Mtb Erdman strain was pre-coated with it. In this 170 

study, the positive effect on survival was associated with an enhanced granulomatous response in the lungs as 171 

compared to controls receiving an isotype-specific non-related mAb (63). 172 

Another mAb, MBS43 (IgG2b) directed to MPB83, a surface lipoglycoprotein, prolonged the survival of intravenously 173 

infected mice associated with reduced granuloma size and decreased necrosis in the lung (64).  174 

Enhanced survival has also been observed in experiments using the mAb SMITB14 (IgG1) directed against the AM 175 

portion of LAM. Passive immunization of BALB/c mice with SMITB14 and its corresponding F(ab') have been shown 176 

to provide protection against Mtb infection in BALB/c mice, as determined by dose-dependent reduction in bacterial 177 

load in lungs and spleens, reduced weight loss and increased long-term survival (65). 178 

In another study, mice receiving intravenous mAb 5c11 (IgM), that recognizes other mycobacterial arabinose-179 

containing carbohydrates in addition to AM, prior to mannosylated lipoarabinomannan (ManLAM) administration, 180 

showed a significant clearance of ManLAM and redirection of this Mtb product to the hepatobiliary system (66). This 181 

study provided evidence that Abs can affect the fate of free mycobacterial polysaccharides. In addition, it was 182 

suggested that the liver and bile salts may have a role in the defense against mycobacterial infection, especially in 183 

the presence of specific Abs (66). 184 

Heparin-binding haemagglutinin (HBHA) is a surface exposed protein which has been involved in mycobacterial 185 

dissemination (67). Two mAbs against HBHA: 3921E4 (IgG2a), and 4057D2 (IgG3), were used to coat mycobacteria 186 

before administration to mice. In mice receiving mycobacteria pre-coated with either mAb, spleen CFUs were 187 

reduced while lung CFUs were comparable to those of control (67). These results suggested that anti-HBHA Abs 188 

interfered with mycobacterial dissemination. 189 

The Mtb 16 kDa protein (also called Acr antigen or HspX) has been identified as a major membrane protein and its 190 

expression is increased in Mtb growing inside infected macrophages (68-70). IgA mAbs against this protein reached 191 
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the respiratory fluids after its administration by different routes (71). Intranasal administration of mAb TBA61 (IgA), 192 

directed against 16-kDa antigen of Mtb resulted in lung CFU reduction 9 days after intranasal or aerosol challenge 193 

with Mtb (72). These results suggested that Abs could affect the early stages of infection. In another series of 194 

studies, López and colleagues evaluated the efficacy of TBA61 in the control of pulmonary infection (73). Using an 195 

intratracheal model of pulmonary infection with Mtb H37Rv, they evaluated bacterial load and morphometric and 196 

histological changes in the lungs of infected mice treated with the mAb (73). The results showed a significant 197 

reduction in bacterial load and morphometric and histopathological changes in lungs of mice treated with TBA61, 198 

compared to control groups. The reduction of CFU in lungs of the treated group was associated with a better 199 

organization of the granulomas and less pneumonic area (73).  200 

Balu and colleagues evaluated the properties of a new human mAb recognizing the 16 kDa protein (74). The mAb 201 

2E9 (IgA1) was constructed using a single-chain variable fragment clone selected from an Ab phage library (74). The 202 

intranasal co-inoculation of 2E9 (IgA1) with recombinant murine IFN-γ significantly inhibited lung infection in 203 

transgenic mice for human myeloid IgA Fc receptor, CD89 (74). Inhibition of the infection by the Ab was synergistic 204 

with human rIFN-γ in cultures of purified human monocytes (74). This study demonstrated the feasibility of 205 

generating human mAbs to mycobacterial Ags, and their efficacy in mouse models adapted to human immune 206 

system (74). 207 

In other experiments, the coating of Mtb with human IgG and secretory IgA formulations inhibited the infection in 208 

mouse models of progressive TB, which suggest that human Abs, directed to CEC are associated with protection 209 

against Mtb (75, 76). 210 

The administration to mice of pAbs derived from healthy humans highly exposed to Mtb afforded protection in a Mtb 211 

challenge model in mice with the protection being associated with the presence of Abs against the CE (77). 212 

Administration of a commercial human IgG formulation pre-incubated with Mtb, abrogated the initial protection 213 

afforded by this formulation, suggesting an important role of Abs in Mtb protection (76). 214 

These experimental evidences suggest a role of Abs in the defense against TB and the importance to consider the 215 

potential of mycobacterial CEC to elicit protective Ab responses in TB vaccine development. 216 

5.0. TB VCs based on mycobacterial CEC 217 

CEC have been used in TB vaccine development as adjuvants, and/or vaccine immunogens, although it is not 218 

always possible to establish a clear-cut distinction of these activities due to the overlapping effects of the 219 

components in several VCs. In the following sections, we will discuss the use of different CEC as adjuvants and 220 

vaccine immunogens.  221 

5.1.  Mycobacterial CEC as adjuvants. Vaccines based on individual proteins or fusion proteins are attractive 222 

alternatives because they are safe and produce little or no adverse effects. However, with few exceptions, proteins 223 

themselves are not detected as signs of danger and therefore do not induce IR in their first encounter with the host. 224 

To induce an IR, protein vaccines require pathogen-associated molecular patterns (PAMPs), which are small 225 

molecular structures found mainly in microorganisms like bacteria and viruses. The recognition of PAMPs through 226 

the pattern recognition receptors (PRR) triggers the induction of innate responses that finally lead to the specific 227 

adaptive IR against protein vaccines.  228 

The immune properties of the lipid PAMPs present in the CE of mycobacteria have been extensively investigated. 229 

The early studies of Ribi et al. (78) and other studies (79, 80) demonstrated the adjuvant capacity of polar and apolar 230 
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mycobacterial CW extracts in different vaccine formulations against TB (Table 4) and other diseases (81, 82), 231 

including cancer (83, 84). Further studies have shown that lipids present in the CE of mycobacteria are powerful 232 

adjuvant for Th1 IR when delivered as liposomes and that these lipids can improve the protection against TB by 233 

themselves (85) (Table 4) or in a formulation with a subunit vaccine (86) (Table 1). 234 

LMs, LAMs, ManLAM, lipoproteins, PDIMs, mycolic acids (MAs) and mycolate esters are among the most important 235 

PAMPs on the mycobacterial CE. In recent years, much progress has been made in elucidating the immune 236 

molecular mechanisms triggered by mycobacterial glycolipids and the host cellular receptors involved in these 237 

processes (87). However, a few studies have demonstrated the contribution of these glycolipids (or their derivatives) 238 

to the protection against Mtb in animal models, when formulated with subunit vaccines.  239 

Below, we describe examples that have been reported on the use of mycobacterial CEC as adjuvants of TB subunit 240 

VCs in Mtb-challenge experiments. 241 

5.1.1. Monomycoloyl glycerol (MMG): The study of Andersen et al. has demonstrated that immunization of 242 

mice with Ag85B/ESAT-6 adjuvanted with N,N-dimethyl-N,N-dioctadecylammonium bromide (DDA) 243 

liposomes in combination with MMG or synthetic analogues induced a Th1-biased IR that provided 244 

significant protection against TB at levels comparable to the protective immunity induced by BCG 245 

vaccination (88) (Table 1). 246 

5.1.2. TDM: TDM is one of the most potent immunostimulatory molecules on the mycobacterial CE; this glycolipid 247 

formulated with either protein Ags or DNA vaccines has shown powerful adjuvant properties.  248 

The study of de Paula et al., has shown that a single dose of co-encapsulated DNAhsp65 and TDM into 249 

biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres reduced the bacterial burden of Mtb 250 

in mice and guinea pigs as efficiently as three doses of naked DNAhsp65 (89) (Table 2). However, this 251 

vaccination scheme did not exceed the protection conferred by BCG. Conversely, boosting BCG-252 

vaccinated mice with DNAapa coencapsulated with TDM in microspheres reduced the bacterial burden 253 

in lungs 70 days post Mtb challenge compared to vaccination with BCG alone (90) (Table 2). 254 

Mtb10.4–HspX fusion antigen adjuvated with DDA and TDM induced antigen-specific humoral and cell-255 

mediated immunity. When used as a booster to BCG, this formulation slightly improved the protection 256 

conferred by BCG alone against Mtb challenge in mice (91) (Table 1). 257 

Similarly, Decout et al. found that vaccination of mice with Ag85A and TDM incorporated in DDA 258 

liposomes induced strong Th1 and Th17 IRs and conferred protection against Mtb infection (92) (Table 259 

1). 260 

The toxicity of TDM restricts its use as adjuvant for vaccines. Unlike TDM, trehalose dibehenate (TDB), 261 

a structural analogue of TDM, in which simpler fatty acids replace the complex mycolic acids, has an 262 

acceptable toxicity. Several studies have demonstrated that TDB formulated in cationic liposomes with 263 

DDA (formulation called CAF01) and with a fusion protein Ag85B-ESAT-6 or ESAT-6 as single protein 264 

induced strong Th1 and Th17 responses and protection against Mtb infection in mice at levels 265 

comparable to the protective immunity induced by BCG vaccination (93-95) (Table 1). 266 

The adjuvant properties of CAF01 and two other liposomal adjuvants: Cationic CAF04 (DDA/MMG), 267 

and CAF05 [DDA/TDB in /poly(I:C)] have been tested in combination with the fusion protein H56 268 

(Ag85B-ESAT6-Rv2660c) in non-human primates. The results of this study have shown that 269 
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immunization with formulations of H56 in all adjuvants (used as BCG-boosters) resulted in better 270 

survival of the monkeys infected with Mtb and better protection readouts compared to BCG alone, 271 

albeit at non-significant levels (96) (Table 1). 272 

5.1.3. Glucose monomycolate: The study of Decout et al., has demonstrated that glucose and mannose 273 

esterified at O-6 by a synthetic α-ramified 32-carbon fatty acid are agonists of the C-type lectin receptor 274 

Mincle with similar adjuvant activity to that of TDM. One of these structurally simple synthetic Mincle 275 

ligands, GlcC14C18, has been shown to be less toxic than TDB on the host cells. This adjuvant 276 

induced protective immunity in a mouse model of Mtb infection when incorporated in DDA and 277 

inoculated with Ag85A to a similar extent to that afforded by vaccination with Ag85A/DDA/TDB (92) 278 

(Table 1). 279 

5.1.4. Arabinomannan (AM): The portion of AM of LAM has been used as adjuvant in different vaccine 280 

formulations. When AM linked to Ag85B was conjugated in Eurocine™ L3 adjuvant emulsion or in 281 

Alum, the resulting conjugates showed good protective efficacy against Mtb challenge in guinea pigs 282 

and mice, respectively. However, the protection afforded by these conjugate vaccines in mice was less 283 

efficient than BCG vaccination (97) (Table 1). An AM-tetanus toxoid conjugate (AM-TT), formulated in 284 

Eurocine™ L3 adjuvant, was used as intranasal boost to BCG. The bacterial loads in the spleens of 285 

Mtb-challenged animals were reduced in boosted animals compared to non-boosted animals. This 286 

finding suggests a direct contribution of AM to the protective efficacy of the conjugate vaccine. 287 

However, lung protection against Mtb infection was not improved in boosted animals (98) (Table 1).  288 

Finally, Prados-Rosales et al.; have used the native capsular AM in vaccine formulations against 289 

tuberculosis infection of mice. They found that vaccination with capsular AM-Ag85b conjugate 290 

increased the survival of Mtb infected animals when compared to non-vaccinated or Ag85b-immunized 291 

mice. The survival of AM-Ag85b-vaccinated mice was similar to that of BCG-vaccinated animals but 292 

the bacterial counts in the lungs and spleen of mice after Mtb challenge was similar between the three 293 

groups (99) (Table 1). Interestingly, the authors of this study used passive immunization of naïve mice 294 

with sera from AM-Ag85b vaccinated animals to demonstrate that the protection mechanism induced 295 

by AM-Ag85b was antibody (Ab) mediated. They propose that specific Abs to both AM and Ag85b 296 

contributed to control bacterial dissemination. This observation is consistent with the modest 297 

protection conferred by AM-conjugates linked to Mtb unrelated proteins, such as TT [see above, (98) 298 

(Table 1)] and PA from Bacillus anthracis (99) (Table 1). 299 

5.1.5. Phosphatidylinositol di-mannoside (PIM2): PIM2 and its derivatives have been formulated with the 300 

fusion protein Ag85A-ESAT-6 and tested as anti-bovine TB vaccines in a mouse model. Vaccination of 301 

mice with Ag85A-ESAT-6+ PIM2 or BCG conferred a significant reduction in the bacterial load in lungs 302 

compared to that for the PBS control, but only BCG vaccination resulted in a significant reduction in the 303 

mean spleen bacterial count. Other PIM2 derivatives were not shown to improve the protection induced 304 

by the fusion protein Ag85A-ESAT-6 alone. In fact, PIM2ME, a monoether derivative of PIM2, 305 

appeared to have a detrimental effect in the control of bacterial replication in lungs and spleen of 306 

vaccinated and Mycobacterium bovis (Mbo) infected mice (100) (Table 1). Larrouy-Maumus et al., 307 

assayed the adjuvant properties of mycobacterial lipids formulating PIM2 and diacylated 308 
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sulfoglycolipids (Ac2SGL) in liposomes made of DDA and TDB and used them as vaccines against Mtb 309 

in guinea pigs. The results showed that lipid VCs induced reduction of bacterial counts in spleen but 310 

not in lungs when compared to the unvaccinated group. However, vaccinated animals showed less 311 

pathology and also less lung necrosis (101) (Table 1).  312 

Wedlock et al., used culture filtrate proteins (CFPs) from Mbo with different lipid formulations in DDA as 313 

boosts of BCG vaccination in cattle. In this study, PIM2 did not improve the protection induced by BCG 314 

alone in Mbo-challenged cattle. Remarkably, only the synthetic lipopeptide and the TLR2 agonist, 315 

Pam3Cys-SKKKK, formulated in DDA with CFPs conferred better protection compared to BCG alone 316 

(102) (Table 1). 317 

5.1.6. Poly-α-L-glutamine (PLG) are glutamine-rich self-assembling peptides that are associated with the 318 

peptidoglycan layer of mycobacteria through noncovalent interactions. The adjuvant power of these 319 

peptides has been recently assessed. PLG improved the protective efficacy of ESAT-6 alone in a 320 

mouse model of TB, thus reaching to a protection level equivalent to that conferred by BCG vaccination 321 

(103) (Table 1).  322 

5.2. Mycobacterial CEC as immunogens. Vaccines obtained from/or containing CEC can be classified according to 323 

the platform strategy: either as subunits, DNA, Mtb Ags expressed in attenuated vectors, CE extracts and natural and 324 

artificial membrane vesicles (MVs) (Tables 1-5).  325 

5.2.1. Subunits. Considering the potential for protection of the Ab responses against CE carbohydrates, and the 326 

growing evidence of the importance of the lipid components in the elicitation of potent T cell responses 327 

against mycobacterial lipids, the breadth of the evaluated VCs as subunits has been expanded beyond the 328 

classical protein-based vaccine targets including carbohydrate and lipid components (Table 1) (63, 65, 329 

104-107). 330 

Various subunit VCs have been evaluated using different adjuvant and delivery systems, as isolated 331 

components or as cocktails or fusion proteins, as multi-stage constructions covering different stages of the 332 

infection, administered by different routes and in prime-boost regimes, combined with BCG or with other 333 

VCs (Table 1). 334 

In general, the VCs evaluated showed good potential as TB vaccines inducing good immunogenic 335 

responses and protection against Mtb or Mbo in animal models, some of them are at the advanced stages 336 

of clinical evaluation (Table 1). 337 

 338 

5.2.2. DNA. DNA vaccines, with their capacity to elicit humoral and cellular Th1 IRs, including CD8+ cytotoxic 339 

responses have been considered obvious candidates for new generation TB vaccine development (154, 340 

155). 341 

DNA VCs, containing CE Ags genes, with different adjuvants, delivery systems and prime-boost schemes 342 

demonstrated good immunogenicity and protective capacity in different animal models (Table 2).  343 

5.2.3. Mtb CE-antigens expressed in attenuated vectors. The use of bacterial and viral vectors expressing 344 

heterologous Ags as new generation vaccines is one of the most important technological platforms due to 345 

their multiple advantages (186, 187). Expression of CE Ags and in various antigen combinations, either by 346 
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themselves or combined with other VCs in prime-boost schedules, exemplify some of the candidates at the 347 

advanced stages of clinical evaluation (Table 3). 348 

5.2.4. CE extracts. The presence in the mycobacterial CE of multiple components associated with the interaction 349 

with host receptors, virulence and important processes of relevant importance for the survival of the 350 

bacteria, in addition to their accessibility to the host IRs, has influenced the use of different CE extracts as 351 

experimental VCs (Table 4). 352 

These candidates represent multi-antigenic formulations with intrinsic adjuvant effect, which has been 353 

evaluated as prophylactic and/ or therapeutic experimental vaccines in different animal models and clinical 354 

trials (Table 4). 355 

5.2.5. Natural and artificial membrane vesicles (MVs). The important role of bacterial MVs in cell–cell 356 

communication, immunomodulation, virulence and cell survival, and their intrinsic potential advantages as 357 

VCs have focused the interest for their evaluation in animal and human studies, some of them 358 

demonstrating suitable efficacy (230, 231). 359 

Mtb produce MVs, which contain relevant Ags and are potentially involved in the virulence and in the 360 

interaction with immune effectors inducing different types of IRs (232-234). 361 

Considering the results obtained with the evaluation of MVs as vaccines from different microorganisms, 362 

natural and artificial MVs from pathogenic and non-pathogenic mycobacteria have been evaluated in 363 

animal models demonstrating their immunogenicity and protective capacity, either used alone or as BCG 364 

boosters (Table 5). 365 

6. Concluding remarks 366 

Mtb CE is a structure which have been capitalized as an important part of the research related to Mtb due to its 367 

peculiar structural organization and its huge impact in the physiology, survival, virulence, interactions with the host 368 

cells and the immune system and its potential importance in diagnosis, therapeutic and vaccine development (6-9, 369 

12, 15, 16). 370 

The great diversity and accessibility of their components comprising proteins, lipids, carbohydrates, glycolipids and 371 

lipoproteins make them potential targets for vaccine development (238-242). 372 

The important contribution of the CEC in the interaction with the host and the elicitation of non-specific IRs, 373 

associated with their intrinsic adjuvant properties have attracted attention in the field of vaccine development (6, 15, 374 

243-246). 375 

Considering the growing evidence of the importance of the Ab responses in the protection against Mtb, the selection 376 

of accessible CEC as VCs is an obvious choice with encouraging results (62, 97-99). 377 

The presence of immunodominant protein Ags, eliciting protective IRs in the acute phase of the infection highlights 378 

the interest in the CEC, as exemplified by the incorporation of this class of Ags in various vaccine platforms 379 

evaluated either in animal models or clinical evaluation (111, 140, 141, 157, 159, 174, 178, 179, 188, 190, 202, 216, 380 

217).  381 

The importance of lipid components in the induction of specific IRs with potential impact in protection also present an 382 

added element which demonstrate the importance of CEC for the development of new generation vaccines against 383 

TB (3, 101, 104, 105, 107, 246, 247). 384 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

11 

 

The great variety of Ags included in the CE related with different stages of the infection is an added advantage for the 385 

development of multi-stage VCs such as fusion proteins, antigen cocktails, CE extracts and natural and artificial 386 

membrane vesicles, which have been evaluated successfully in animal models, with some under clinical evaluation 387 

(69, 85, 109, 113, 130-132, 134, 136, 223-228, 235-237). 388 

Another aspect that needs to be considered is the complexities involved in advancing some VCs (extracts synthetic 389 

analogues or combinations) from preclinical to clinical proof of concept. The main potential hurdles that face these 390 

VCs are associated with the characterization of the active component, complexity & consistency of manufacturing 391 

processes and the associated challenges in quality control issues of manufacturing. 392 

It is interesting to note that apart from whole cell-based VCs, almost all the VCs which have been evaluated and 393 

those under evaluation in animal models and in clinical trials belong to the Mtb CEC (3, 248). However, it should be 394 

highlighted that the CE based VCs studied thus far, only represent a fraction of the great diversity of the CEC 395 

(proteins, lipids and carbohydrates) that are available (239, 243, 249, 250). Many others have the potential to be 396 

further explored as new components for the development of vaccines stimulating all the components of the IR and 397 

targeting all the phases of the infection. 398 
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Table 1. Subunit VCs developed from Mtb CEC. 1085 

 1086 

Vaccine 
candidates (VC) 

Subunit VCs developed from Mtb CEC   
Comments 

 
Ref Model Route Adjuvant Prime Boost Challenge Protec 

Y/N 

Proteins 
Ag16kDa Mouse O/IN Starch microparticles VC VCx2 No - H&C-IR (108) 
Ag16kDa-EsxS in PLGA Mouse SC DOTAP VC VC No - H&C-IR  (109) 
Ag27kDa Mouse SC Ribi or DDA BCG VC Mtb-IV N-CFU Strong Th1 

(with BCG/Mtb-Ags) 
(110) 

Ag85A Mouse ID CAF01 or  
TDB synthetic 
analogues+DDA 

VC VCx2 Mtb-IN Y-CFU H&C-IIR. Protec  
(+potent: synthetic analogues) 

(92) 

Ag85B Mouse  IN CPG BCG VC BCG-AER Y-CFU Presence of dendritic in BAL  (111) 
Ag85A-Ag85B Mouse IN/SC DDA VC VC Mtb-IN Y-CFU Mucosal, H&C-IR cells.  (112) 
Ag85A-ESAT6  Mouse SC Synthetic PIM2+oil+ 

water (EmulsigenTM) 
VC VCx2 Mbo-AER Y-CFU H&C-IR (100) 

Ag85A-Ag85B-CFP20.5-
CFP25-CFP32  

Mouse SC DDA-MPL  VC VC Mtb Y-CFU H&C-IR (113) 

Ag85B-ESAT6 (H1) Mouse O/SC DDA-MPL  VC- 
O/SC 

VC-
O/SC 

Mtb-AER Y-CFU C-IR. Oral: no priming effect. (114) 
Guinea pig MPL, CT, LT  
Mouse SC BCG lipids in cationic 

liposomes 
VC VCx2 Mtb-AER Y-CFU H&C-IR 

LT-Protec>BCG  
(86) 

Mouse  PLG    Y-CFU 
& S 

Protec=BCG (103) 

Mouse IN LTK63 BCG VC Mtb-AER Y-CFU C-IR (115) 
Mouse SC MMG in cationic 

liposomes 
VC VCx2 Mtb-AER Y-CFU Protec=BCG (88) 

Mouse SC CAF01 VC VCx2 Mtb-AER Y-CFU C-IR. LT-Protec.  (93) 
Mouse IM CAF01 & Bioneddles VC VCx2 Mtb-AER Y-CFU C-IR. Protec=BCG (94) 
Mouse- 
Neonatal/adult 

SC IC31 or Alum VC  BCG-IV Y-CFU C-IR.  (116) 

Guinea pig SC DDA-MPL or TDB VC VC Mtb-AER Y-S C-IR.  (117) 
NHP IM DDA-MPL or ASO2A VC  Mtb-IT Y-CFU H&C-IR (118) 
HHA-TST- IM IC31 VC  No - C-IR. AT (119) 
HHA- BCG-Vac IM IC31 VC  No - H&C-IR. AT (120) 
HHA-TST- IM CAF01 VC  No - C-IR. AT (121) 
HHIV-Inf-adult IM IC31 VC  No - Phase II. C-IR (Th1). AT (122) 
HHAd-TST-/+ IM IC31 BCG VC No - Phase II. C-IR. AT (123) 

Ag85B-TB10.4 (H4) 
(Aeras-404) 

Mouse SC CAF01 VC/Ad Ad/VC Mtb-AER Y-CFU C-IR  (124) 
Mouse/ 
Guinea pig 

SC IC31 VC  Mtb-AER Y-CFU Dose dependent induction 
Th1.  

(125) 

Guinea pig SC IC31 BCG VC Mtb-AER Y-CFU C-IR (126) 
HHA- BCG-Vac IM IC31 BCG VC No - C-IR. AS. (127) 
HHA-BCG-Vac IM IC31 BCG VC No - Phase I. C-IR. AS&T. (128) 
HHAd-BCG-
Vac 

IM IC31 BCG BCG/ 
VC 

No - Phase II. Prevention QFT 
conversion. AS&T 

(129) 

Ag85B-ESAT6-Rv2660c 
(H56) 

Mouse SC CAF01 BCG VC Mtb-AER Y-CFU C-IR. Protec  
(pre & post exposure) 

(130) 

NHP IM IC31 BCG VC Mtb-IT Y-S C-IR. Protec  
(pre & post exposure) 

(131) 

NHP IM CAF01, CAF04, 
CAF05, IC31 

BCG VC Mtb-IT Y-S C-IR  (96) 

HHA-TST-/+ IM IC31 BCG VC No - H&C-IT. AS&T. (132) 
Ag85B-Rv2660c-
TB10.4(H28) 

Mouse SC CAF01 VC VC/ 
MVA28 

Mtb-AER Y-CFU C-IR. Protec>BCG  
(VC7VC)  

(133) 

NHP IM IC31 BCG VC/ 
MVA28 

Mtb-AER Y-S C-IR. Protec  
(with both schemes)  

Ag85B-HspX-Mpt64- Mouse SC DDA-BCG PSN BCG VC Mtb-IV Y-CFU H&C-IR. Protec>BCG  
Combined vaccines  
(as BCG-booster)  

(134) 
Ag85B -Mpt64-Mtb8.4 

Mouse SC DDA-PSN VC/ 
BCG 

VCx2 Mtb-IV Y-CFU H&C-IR. Protec>BCG  
(as BCG booster)  

(135) 

Ag85B-HspX-CFP10-
ESAT6- 

Mouse SC CpG/Alum VC VCx2 No - H&C-IR (136) 
Guinea pig IM CpG/Alum BCG VCx2 Mtb-SC Y-CFU - 

CFP8-CFP10-CFP15 
ESAT6-TB10.4 

Mouse SC MPL/DDA VC VCx2 Mtb-IV Y-CFU - (137) 

CFP11-CFP21-CFP22.5-
CFP31-MPT64 
CFP10-HBHA-TB8.4- Mouse  SC DDA/MPL/TDB (DMT) VC VC  Mtb-AER Y-CFU H&C-IR (138) 
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TB10.4-Rv3615c- 
ESAT6 Mouse  SC CAF01 VC VCx2 Mtb-AER Y-CFU C-IR. LT-Protec  

(subdominant epitopes) 
(95) 

EsxR  Mouse SC MPL-TDM  BCG VC Mbo Y-CFU C-IR (139) 
HBHA Mouse IN CT VC VC BCG-IN Y-CFU H&C-IR. (140) 

BCG/ 
VC 

VCx4 Mtb-IT Y-CFU H&C-IR. Protec>BCG 
(as BCG-booster)  

(141) 

Mtb10.4-HspX Mouse SC TDM+DDA BCG VCx2 Mtb-IV Y-CFU Protec=BCG. H&C-IR (91) 
Mtb72F Mouse IM ASO2A/ ASO1B VC VCx2 Mtb-AER Y-CFU H&C-IR (142) 

Mouse/ 
Guinea pig 

SC  ASO2A VC/ 
BCG 

VCx2 Mtb-AER Y-S H&C-IR (143) 

Rabbit  IM ASO1A/AS01B   BCG/ 
VC 

VCx3 Mtb-
intratecal 

Y-CFU H&C-IR.  (144) 

NHP IM ASO2A BCG/ 
VC 

VCx2/3 Mtb-IT Y-CFU 
& S 

C-IR. Protec>BCG (145) 

HHA-TST- IM ASO2A VC VCx2 No - Phase I. H&C-IR. AT (146) 
HHA-BCG-Vac/ 
Mtb infected 

IM  ASO2A VC VCx2 No - Phase I/II. H&C-IR. AT (147) 

HHA-TST- 
No-BCG-Vac 

IM ASO2A VC VCx3 No - Phase I. H&C-IR. AT (148) 

HHA-TST- IM  ASO1/AS02  VC (M72/ 
M72F) 

VC  No - Phase I/II. H&C-IR. 
Protec>BCG (M72-ASO1). AT 

(149) 

PE20  Guinea pig  IM DDA/TDB VC VCx2 Mtb-AER Y-CFU H&C-IR (150) 
Culture Filtrate Proteins 
(CFPs) 

Cattle SC DDA+MLP or 
synthetic PIM2 or 
Pam3CSK4 with BCG 

VC VCx2 Mbo-IT Y-CFU  Better results with Pam3CSK4  (102) 

Carbohydrates          
AM (Arabinomannan) Mouse SC/IN TT/EurocineTML3 SC  IN  Mtb-IN Y-S C-IR (97) 

Guinea pig SC/IN TT/EurocineTML3 SC  IN  No - H&C-IR 
Mouse  IN TT/EurocineTML3 BCG VC  Mtb-IV Y-CFU C-IR (98) 

AM-Ag85B Mouse SC Alum VC VC  Mtb-IV Y-S - (97) 
Guinea pig SC No SC  IN Mtb-AER Y-CFU 

& S 
- 

Mouse SC Alum VC VCx2 Mtb-AER Y-CFU 
& S 

H-IR Inhibit Mtb dissemination  (99) 

Lipids 
Ac2SGL+ PIM2 (LipVac1) Guinea pig IM DDA & TDB  

(liposomes) 
VC VCx2 Mtb-AER Y-CFU  (101) 

SL37+PIM2 (LipVac2) 
PIMs Mouse  liposomes & lipid A VC  Mtb Y-S H&C-IR (151) 
TDM (cord factor) Mouse  IV/IP  VC VC Mtb-IV Y-S - (152) 
TDM-MBSA Mouse SC IFA VC VC  Mtb-IV Y-CFU 

& S 
- (153) 

  
Ac2SGL: Diacylated sulfoglycolipids; AER: aerosol; AM: Arabinomannan; AT: Acceptable tolerability; AS&T: Acceptable Safety & tolerability; BCG: Bacille Calmete-Guerin; 
BCG-Vac: BCG-vaccinated; C cellular; CFU: colony forming unit; HHA: human healthy adults; HHAd: human healthy adolescents; H: humoral; IM: intramuscular;  
IV: intravenous; IT: intratracheal; IP: intraperitoneal; IR: immune response; Inf-adult: infected adults; LT: long term; Mtb: Mycobacterium tuberculosis; M72: point mutation of 
Mtb72F; O: oral; Pam3CSK4: synthetic lipopeptide; PIMs: Mannophosphoinositides; PLG: Poly-α-L-glutamine; Protec: Protection; SC: subcutaneous; S: survival;  
TDB: Trehalose-6,6-dibehenate; TDM: Trehalose-6,6-dimycolate (cord factor); TDM-MBSA: TDM methylated BSA; TT: tetanus toxoid; VC: Vaccine candidate; Y/N: yes/no. 
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Table 2. DNA based vaccines 1089 

 1090 

Vaccine  
candidates (VC) 

DNA based VC   
Comments 

 
Ref Model Route Adjuvant Prime Boost  Challenge Protec (Y/N) 

19 kDa /Rv3763 Mouse  IM No VC VCx2 Mtb-IV N H&C-IR (156) 
27kDa Mouse IM No BCG VCx2 Mtb-IV/BCG N -CFU Abrogates BCG Protec  (110) 
Ag85A Mouse IM PLG VC  VCx2 Mtb-AER Y-CFU C-IR (157) 

Mouse  SC No VC VCx2 Mtb-AER Y-CFU C-IR (158) 
Guinea pig GG IFA VC VC/Ag85A Mtb-AER Y-CFU - (159) 

Ag85A (S. thyphimurium as 
delivery system) 

Mouse O/IN No VC VCx2 Mtb-IV Y-CFU H&C-IR (160) 

Ag85B Mouse IM Cardiotoxin VC VCx3 Mbo Y-partial H&C-IR  (161) 
Mouse  IM - VC  VC/BCG Mtb-AER Y-CFU - (162) 

Ag85B-CFP10-CFP21 Mouse  IM No VC VCx2 Mtb-IV Y-CFU H&C-IR.  (163) 
Ag85B-MTP64-MTP83 Cattle c. IM No VC  BCG Mbo Y-CFU C-IR (164) 

Mouse  IM IL2 gene VC  VCx2 Mtb-IV Y-CFU H&C-IR (165) 

Cattle c. IM DDA VC VCx2 Mbo-IT Y-CFU) H&C-IR (166) 
Ag85B-ESAT6-KatG-Rv1818c- 
MTB8.4-MTB12-MTB39A- 
MPT63-MPT64-MPT83 

Mouse  IM Fused to TPA/ 
ubiquitin-Ub 

VC VCx2 Mtb-AER Y-CFU & S  C-IR (167) 

Ag85A-ESAT6 Mouse  IM No VC VC/BCG/ 
attenuated Mb 

Mbo-AER Y-CFU H&C-IR. Protec=BCG  
(with booster) 

(168) 

Ag85B-ESAT6 Mouse IM No VC/ 
BCG 

VC Mtb-AER Y-CFU & S C-IR-IR. Protec>BCG 
(as booster) 

(169) 

Mouse  IM No VC  VC Mtb Y-CFU H&C-IR. Protec=BCG (170) 
Ag85A-Ag85B-CFP10 ESAT6 
(Tcell epitopes fused to HSP65) 

Mouse 
 

IM No VC VCx3 BCG-IN  Y-CFU H&C-IR (171) 

Ag85B-ESAT6-MPT83 Mouse  IM DDA VC VCx2 Mtb-IV Y-CFU H&C-IR. Protec>BCG (172) 
Apa Mouse  SC/ 

IM 
TDM+PLGA BCG-SC VC-IM Mtb-IT Y-CFU Protec>BCG (90) 

Apa/Pro Mouse SC/ 
IM 

CMV-IE/ 
ubiquitin 

VC VC BCG-IV Y-CFU H&C-IR (173) 

Guinea pig ID  VC - No - H&C-IR 
ESAT6 Mouse IM No VC/rBCG VC/VCx2  No - C-IR (174) 

Guinea pig IM No VC/rBCG VC/VCx2 Mtb-AER N-CFU No protec: VC.  
Abrogates protec  
(as booster of rBCG) 

ESAT6/16kDa/SodA Mouse  IM No VC VCx2 No - H&C-IR (175) 
Guinea pig IM No VC VCx2 Mtb-SC Y-CFU 

ESAT6-CFP10  Bull calves  IM IFA + 
DNA:GM-CSF + 
DNA:CD80/CD86 

VC VC No - H&C-IR. Best results with: 
VC+DNA:GM-CSF + 
DNA:CD80/CD86 

(176) 

Calves IM VC/BCG 
VC+BCG 

VC Mbo-AER Y-CFU Best results with: 
BCG+VC+DNA:GM-CSF+ 
DNA:CD80-CD86) 

ESAT6/KatG/MPT64/HBHA Mouse  IM No  VC VCx2 Mtb-AER Y-CFU H&C-IR (177) 
HSP65 

 

Mouse IM/ 
GG 

No VC VCx2 Mtb-IT Y-CFU H&C-IR. Protec:Y (IM): 
Protec: N (GG) 

(178) 

Mouse/ 
Guinea pig 

IM TDM+PLGA VC - Mtb-IT Y-CFU H&C-IR. Protec=BCG (89) 

Mouse  IN/IM No  BCG-
IN/SC 

VCx2 Mtb-IT Y-CFU C-IR. Protec>BCG 
(BCG-IN + VC) 

(179) 

Hsp65-Hsp70-Apa Mouse  IM No VC  VCx3/BCG Mbo-IV Y-CFU C-IR. Protec:  
(with BCG boost) 

(180) 

LppX (22kDa) Mouse IM No VC VCx2 Mtb-IV N-CFU H&C-IR (181) 
MPT64 fused to ubiquitin Mouse  IM No VC VCx2 Mtb-AER Y-CFU H&C-IR (182) 
MPB83  Mouse IM No VC VCx3 Mbo-IV Y-CFU H&C-IR (183) 

Cattle c. IM No VC VCx2 No -  C-IR  
MPB70/MPB83 Cattle  IM No VC  VCx2/ 

Proteinx2 
Mbo-IT N-CFU H&C-IR  

(after priming with protein) 
(184) 

Mtb72F Mouse IM No VC VCx2 Mtb-AER Y-CFU H&C-IR (142) 
Guinea pig IM No VC VCx2 Mtb-AER Y-S - 

PstS1/PstS2/PstS3 Mouse IM No VC VCx2 Mtb-IV Y-CFU  H&C-IR. Protec (PstS3) (185) 
 

AER: aerosol; BCG: Bacille Calmete-Guerin; Cattle c.: Cattle calves C cellular; CFU: colony forming unit; GG: Gene-gun; H: humoral; ID: intradermal; IFA: incomplete Freund adjuvant; 
IM: intramuscular; IN: intranasal; IR: immune response; IT: intratracheal; IV: intravenous; Mbo: Mycobacterium bovis Mtb: Mycobacterium tuberculosis; O: oral; Protec: Protection;  
S: survival; SC: subcutaneous; SodA: superoxide dismutase A; VC: Vaccine candidate; Y/N: yes/no. 
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Table 3. TB VCs based on Mtb CE antigens expressed in attenuated vectors 1092 

 1093 

Vaccine 
candidate (VC) 

Mtb CE antigens expressed in attenuated vectors   
Comments 

 
Ref Model Route Prime Boost  Challenge Protec (Y/N) 

Adenovirus (Ad) 
Ag85A Mouse  IM/IN VC-IM/IN VCx2-IM/IN Mtb-IN Y-CFU C-IR. Protec: IN  (188) 

VC-IM/IN VCx3= 2:IM; 1:IN/IM Mtb-IN Y-CFU Protec: IN+IM better results 
Mouse  IN/ID BCG- ChAd-MVA Mtb-AER Y-CFU Protec: ChAd (IN)  

followed by MVA (ID/IN) 
(189) 

Mouse  SC/IN BCG VCx2-IM/IN Mtb-IN Y-CFU C-IR. Protec>BCG: IN (190) 
Mouse IM/IN DNA-IM VC-IN Mtb-IN/AER Y-CFU Protec>BCG: IN (188) 
Mouse/ IM /IN VC - Mtb-IN Y-CFU C-IR. Protec: IN (191) 
Guinea pig IN/IM BCG/VC VC-IN/IM Mtb-AER Y-CFU & S Protec>BCG: IN (192) 
Calves  ID BCG  VC Mbo-IT Y-CFU, 

pathology 
C-IR. Protec>BCG  (193) 

Ag85A-TB10.4 Mouse  IN/IM VC - Mtb-IN Y-CFU C-IR. Protec>BCG (194) 
Ag85A-Ag85B-TB10.4 Mouse IN/IM VC - Mtb-IN Y-CFU C-IR (195) 
Ag85B Mouse  ID/IN DNA-ID VC-IN Mtb-AER Y-CFU C-IR (196) 
BCG 
16kDa Mouse SC VC - Mtb-IV Y-CFU H&C-IR (197) 
72f C. monkey  ID VC VCx2 Mtb-IT Y S C-IR (198) 
Ag85A C. monkey ID VC - Mtb-IT Y-CFU H&C-IR (199) 
Ag85B-16kDa Mouse  SC VC - Mtb-IN Y-CFU H&C-IR (200) 
Ag85B Mouse SC VC - Mtb-IV Y-CFU H&C-IR (197) 

Guinea pig  ID VC - Mtb-AER Y-CFU & S C-IR (201) 
HHA PPD- ID VC - No - C-IR. AT (202) 

Ag85B-ESAT6 Mouse SC VC - Mtb-IV Y-CFU H&C-IR (203) 
Ag85B-ESAT6-INFγ Mouse SC VC - Mtb-IV Y-CFU H&C-IR. Protec>BCG (204) 
Ag85B-CFP10-ESAT6- 
Mtb8.4-MTP40 

Mouse IP VC VCx2  No - H&C-IR (205) 

MPT64-PE_PGRS33 Mouse SC VC - Mtb-AER Y-CFU & S H&C-IR. Protec>BCG  (206) 
Human Parainfluenza type2 virus (rhPIV2) 

Ag85B Mouse  IN VC/DNA VCx3 Mtb-AER Y-CFU C-IR. Protec>BCG (207) 

Influenza virus 
ESAT-6 Mouse/ IN VC VCx2 Mbo-IV Y-CFU C-IR. Protec=BCG (208) 

Guinea pig SC/IN VC VC Mtb-SC Y-CFU Protec=BCG 
Mycobacterium smegmatis 
19 kDa/Rv3763 Mouse SC VC - Mtb-IV N-CFU & S Deleterious effect  (156) 
Ag85B epitope Mouse SC VC VC No - H&C-IR (209) 
Mycobacterium vacae 
19 kDa/Rv3763 Mouse SC VC - Mtb-IV N-CFU & S Deleterious effect (156) 
Salmonella Thyphimurium 

Ag85B  Mouse O/IV VC VCx2  Mtb-IV Y-CFU C-IR (210) 
ESAT6  Mouse IV VC/DNA DNA/VC Mtb-IV Y-CFU C-IR (211) 
Ag85B-ESAT6 Mouse O/IN VC-O/IN Protein-IN No - H&C-IR (212) 

Guinea pig  O/SC VC-O  Protein-SC Mtb-AER Y-CFU & S - 
Modified Vaccinia Virus Ankara (MVA) 
Ag85A Mouse IN/ BCG-IN VC-IN/parenteral Mtb-AER Y-CFU C-IR. Protec>BCG (VC-IN) (213) 

Guinea pig  SC BCG VC/Fowlpox-85A Mtb-AER Y-S Protec>BCG (214) 
Calves  ID BCG  VC Mbo-IT Y-CFU & 

pathology 
C-IR. Protec>BCG  
(VC booster) 

(193) 

R. macaques  ID/AER BCG VC No - IR (AER). AS. (215) 
HHA  ID/AER BCG VC No - Specific-IR. Both were safe  (216) 
HHI ID BCG VC No - C-IR. AS&T. Efficacy=BCG (217) 

Ag85B-ESAT6- Mouse  SC VC - Mtb-IV Y-CFU H&C-IR. Protec>BCG (218) 
Ag85A-Ag85B-ESAT6-
HSP60-MTB39-IL15 

Mouse  SC VC/ 
ESAT&Ag85Bx3 

VCx2/ 
ESAT&-Ag85Bx3 

Mtb-IV Y-CFU C-IR (219) 

Vesicular stomatitis virus (VSV) 
Ag85A Mouse  IN/IM VC/Ad VC-IN Mtb-AER Y-CFU C-IR. Protec:  

(with prime-boost)  
(220) 

VSV-846 (Rv3615c-
Mtb10.4-Rv2660c) 

Mouse IN VC/BCG VC BCG-IN Y-CFU C-IR. Protec>BCG 
(with prime-boost) 

(221) 

VSV-846 Mouse IN VC - BCG-IN Y-CFU C-IR. LT-Protec>BCG  (222) 
 

AER: aerosol; AS: Acceptable safety; AT: Acceptable tolerability; BCG: Bacille Calmete-Guerin; C: cellular; CFU: colony forming unit; ChAd: Chimpanzee Ad; C.monkey: 
Cynomolgus monkey; H: humoral; HHA: human healthy adults; HHI: human healthy infants; ID intradermal; IM: intramuscular; IN: intranasal; IP: intraperitoneal; IR: immune 
response; IT: intratracheal; IV: intravenous; LT: long term; Mbo: Mycobacterium bovis Mtb: Mycobacterium tuberculosis; Protec: Protection; R. macaques: Rhesus macaques; 
S: survival; SC: subcutaneous, T: tolerability;VC: Vaccine candidate; Y/N: yes/no. 
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Table 4. TB VCs based on Mtb CE extracts  1095 

 1096 

Vaccine 
candidate (VC) 

VC based on Mtb CE extracts  
Comments 

 
Ref Model Route Adjuvant Prime Boost  Challenge Protec (Y/N) 

TSP-Aq  Mouse  SC IFA VC VCx2  Mtb-IV Y-CFU C-IR. Protec=BCG  (223) 
CE-PPC Mouse SC/ 

IM 
No VC-SC VCx2- 

SC/IM 
Mtb-IV Y-CFU & S H&C-IR (224) 

LMs  Mouse  SC With/ 
without Alum 

VC VC Mtb-IT Y-CFU Protec= BCG  
(VC with /without Alum) 

(225) 

Myco-CE-O Mouse IV No VC - Mtb-AER Y-CFU Protec: CW from BCG, Mbo, Mtb 
& non-tuberculous mycobacteria  

(78, 79) 

Mtb-WLE Guinea pig  SC QS-21/ 
DDA or both  

VC VCx2 Mtb-AER Y-CFU Protec  
(VC+ QS-21+DDA and QS-21) 

(85) 

RUTI Mouse SC No VC VC Mtb-AER Y-CFU Immunotherapeutic effect on 
reactivation after ST 
chemotherapy. C-IR 

(226) 

Mouse SC No VC VC/ Mtb-AER 
 

Y-CFU ST-Protec=BCG (lung) 
Protec<BCG (spleen) 
LT-Protec=BCG (lung) 

(227) 
BCG VCx2 
VC VCx3 
VC VC Mtb-AER  - Therapeutic effect  

(decrease of CFU) 
(227) 

Guinea pig SC No VC VC Mtb-AER Y-CFU Immunotherapeutic effect on 
reactivation after ST- 
chemotherapy. 

(226) 

Guinea pig SC No VC VC Mtb-AER N-S - (227) 
HHA-no BCG vac 
Non Mtb infected  

SC No VC VC No - Phase I. C-IR. AT.  (228) 

Latently infected 
HIV (+/-) 

SC No VC VC No - Phase II. C-IR. Reasonable 
tolerability. 

(229) 

Myco-CEO Rhesus Monkey IV No VC - Mtb-AER Y-Chest X-rays & 
gross & microscopic 

pathology  

Protec= BCG  
(CWs from BCG & Mbo)  

(80) 

 
AER: aerosol; AT: Acceptable tolerability; BCG: Bacille Calmete-Guerin; C: cellular; CFU: colony forming unit; CE-PPC: Mtb CE protein peptoglican complex in liposomes;  
H: humoral; HHA: human healthy adults; IFA: Incomplete Freund adjuvant; IM: intramuscular; IR: Immune response; IT: intratracheal; IV: intravenous; LMs: lipid extract from M 
smegmatis; LT: long term; Mbo: Mycobacterium bovis Mtb: Mycobacterium tuberculosis; Mtb-WLE: Mtb H37Rv-whole lipid extract in liposomes; Myco-CE-O: Mycobacterial-CE 
in oil; Protec: Protection; RUTI Fragmented Mtb cells in liposomes; S: survival; SC: subcutaneous; ST: short term; TSP-Aq: Aqueous fraction of Triton X-1 00-soluble Mtb H37Rv 
CE proteins; VC: Vaccine candidate; Y/N: yes/no. 
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Table 5. Natural and artificial membrane vesicles (MVs) 1098 

  1099 

Vaccine 
candidate 

(VC) 

Natural and artificial membrane vesicles (MVs)  
Comments 

 
Ref Model Route Adjuvant Prime Boost  Challenge Protec 

Y/N 

MV-BCG/  
MV-Mtb 

Mouse  SC No VC/ 
BCG 

VC Mtb-AER N/Y  
CFU 

Protec=BCG (MV-Mtb).  
No Protect: (MV-BCG) 
Protec>BCG (as BCG-booster) 

(235) 

PLBCG Mouse  SC With/ 
without Alum 

VC/ 
BCG 

VC Mtb-IT Y-CFU Protec=BCG (less lung lesions).  
Protec > BCG (VC as BCG-booster) 

(236) 

PLMs Mouse  SC With/ 
without Alum 

VC VC Mtb-IT Y-CFU Protec (with/without Alum)  
Protec= BCG (VC with Alum)  

(237) 

 

AER: aerosol; BCG: Bacille Calmete-Guerin; CFU: colony forming unit; IT: intratracheal; MV: membrane vesicle; MV-BCG: Natural MV from BCG; MV-Mtb: 
Natural MV from Mycobacterium tuberculosis; PLBCG: Artificial MV from BCG; PLMs: Artificial MV from Mycobacterium smegmatis; Protec: protection;  
SC: subcutaneous; VC: vaccine candidate; Y/N: yes/no 
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