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Muscle tissue engineering can provide support to large congenital skeletal muscle defects using scaffolds
able to allow cell migration, proliferation and differentiation. Acellular extracellular matrix (ECM) scaf-
fold can generate a positive inflammatory response through the activation of anti-inflammatory T-cell
populations and M2 polarized macrophages that together lead to a local pro-regenerative environment.
This immunoregulatory effect is maintained when acellular matrices are transplanted in a xenogeneic
setting, but it remains unclear whether it can be therapeutic in a model of muscle diseases. We
demonstrated here for the first time that orthotopic transplantation of a decellularized diaphragmatic
muscle from wild animals promoted tissue functional recovery in an established atrophic mouse model.
In particular, ECM supported a local immunoresponse activating a pro-regenerative environment and
stimulating host muscle progenitor cell activation and migration. These results indicate that acellular
scaffolds may represent a suitable regenerative medicine option for improving performance of diseased
muscles.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
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1. Introduction

In the last few years, extracellular matrix (ECM) scaffolds
derived from decellularized tissues have been successfully used to
repair a variety of damaged or diseased organs, such as heart [1e3],
skin [4], oesophagus [5,6] and trachea [7,8]. Application in skeletal
muscle field has also been investigated [9], but the engineering of a
functional muscle tissue has only been partially explored [10e17].
Up to now, regeneration or reconstruction of skeletal muscle tissue
with cell therapy has not been completely successful [18], in
particular using aged animal models where the ECM is already
fibrotic or damaged [19,20]. Moreover, cellular engraftment in
muscles such as the diaphragm, it is limited. In this work, we
explored the possibility of implanting a decellularized muscle to
determine in vivo response, potential therapeutic improvement and
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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application of this biomaterial in complex tissue engineering ap-
proaches. Using decellularized scaffolds in tissue engineering can
provide a valid method for the treatment of skeletal muscle damage
and diseases, based on the fact that a biological scaffold possesses
the great advantage to closely resemble the native tissue [21].
Skeletal muscle ECM plays an important role in tissue maintenance
and regeneration, modulating cell adhesion and migration, growth
factor storage and release, and stem cell homeostasis, activation
and differentiation [22,23]. It remains partially unclear which
cellular types contribute to the remodelling, however it is well
established that macrophages play a major role for skeletal muscle
regeneration and turn over [24,25]. Macrophages are activated in
response to tissue damage or infection, causing an increase in the
production of cytokines, chemokines and other inflammatory
molecules to which they are exposed. Their remarkable plasticity
leads to exhibit distinct and frequently opposite phenotypes when
in contact with different environmental stimuli. Several
works showed that the major effect of ECM application in skeletal
muscle, both with same or different origin of recipient tissue, is
to stimulate anti-inflammatory macrophages, leading to a
constructive-type remodelling response [26,27]. Moreover, using a
xenotransplantation model, we recently demonstrated that the
implanted scaffold can modulate the immune response inhibiting
rejection through an increased level of inhibitory cytokines and
decreased levels of pro-inflammatory molecules. Τhis mechanism
of action is probably mediated by the presence of M2 monocytes
that drive the response directly or through interaction with T-cell
subset [28]. In addition, ECM degradation products yield by action
of macrophages, positively influence proliferation and differentia-
tion of muscle precursor cells and myoblasts responsible for the
regenerative maintenance of skeletal muscle tissue [9,29]. How-
ever, it remains to determine whether ECM could promote
remodelling and improve functional outcome on a diseased skeletal
muscle.

With the aim of investigating promotion of repair of damaged/
diseased skeletal muscle by a biological-derived scaffold, we
generated and deeply characterized a decellularized diaphragmatic
tissue. We proved that maintaining original composition and
stiffness, ECM-derived scaffolds were able to activate immune
regulated pathways when transplanted in vivo. This process led to a
local pro-regenerative environment through activation of resident
precursor cells, both in healthy and diseased mouse model.

2. Results

2.1. Generation and characterization of diaphragmatic
decellularized matrix

Diaphragmmuscles fromwild type (wt) mice were treated with
the detergent-enzymatic treatment (DET) protocol. We firstly
investigated the number of cycles appropriate to obtain a complete
cell removal using from 1 to 4 DET cycles. After each cycle, treated
tissues appeared clearer and DNA amount significantly decreased,
without differences between third and fourth cycle (Fig. 1A, B.
Fresh: 225.5 ± 91.2; c1: 87.5 ± 26.1; c2: 21 ± 7.1; c3: 12.5 ± 3.5; c4:
8 ± 0.2 ng/mL). This result was confirmed also by nuclei counting
after staining with DAPI (Fig. 1C, D. Fresh: 135.6 ± 24.6; c1:
83.6 ± 10.5; c2: 57 ± 20.8; c3: 5.9 ± 5; c4: 2.3 ± 3 nuclei/area),
emphasizing that 3 DET cycles were necessary but enough to ach-
ieve more than 95% of nuclei depletion.

In parallel, we analysed ECM preservation after each DET cycle.
The overall thickness of the diaphragmatic muscle after decellula-
rization remained comparable to the fresh counterpart, suggesting
no significant difference in matrix 3D architecture after treatment
(Fig. 1E, F). Histological analyses revealed that the structure and the
most important ECM components, such as collagen, sGAG and
elastin, were preserved after 3 cycles (Fig. 1GeI). Maintenance of
major components was confirmed also by protein quantification,
which showed that only sGAG concentration decreased signifi-
cantly after 3 cycles (Fig. 1G. Fresh: 0.57 ± 0.05; c3: 0.30 ± 0.13 mg/
mg wet tissue).

Scanning electron microscopy (SEM) analysis of the acellular
diaphragmatic matrix showed preservation of the micro- and ultra-
architecture of the tissue, with maintenance of the 3D arrangement
and conservation of myofibre structure and ECM (Fig. 1J). Higher
magnification electron microscopy images confirmed elimination
of nuclei and visualized integrity of collagen fibres between the
myofibres after the decellularization process. Moreover, conserva-
tion of main components and architecture of the matrix allowed to
maintain mechanical properties similar to those of the fresh tissue,
as showed by measuring membrane stiffness and elastic modulus
of the acellular matrix (Fig. 1K, L). No statistical difference was
evident in the membrane force versus strain analyses before (fresh)
and after 3 cycles of decellularization. Importantly, elastic modulus
of wt diaphragm before and after decellularization displayed no
statistical significant changes (Fig. 1M).

2.2. In vivo implantation of the acellular matrix in wt mice

After analysing the acellular diaphragmatic muscle character-
istics, we assessed the biological effects implanting in vivowt ECM-
derived scaffolds (patch) over awild non-injuredmouse diaphragm
(Fig. 2A). Transplanted mice were analysed 4, 7, 15, 30 and 90 days
after patch implantation (n ¼ 4 mice each time point, and n ¼ 4
mice as untreated control, 0 days). At sacrifice, the scaffold was still
identifiable from the surrounding native diaphragm after 4, 7 and
15 days from implantation, whereas for the latest time points, the
area of graft was marked only by the non-absorbable sutures used
for surgery (Fig. 2B). At the moment of harvesting the tissues,
variable levels of liver adhesion to the implanted patch were
observed in all time points (Fig. 2C), as previously described in
literature [30]. The presence or absence of liver adhesion did not
affect the results obtained from further analyses and did not
introduce other types of variability. Haematoxylin & Eosin (H-E)
and Masson's Trichrome stains unveiled that both native dia-
phragm and patch were greatly remodelled during the treatment
(Fig. 2D, F). The native tissue was stimulated to grow and the
thickness significantly increased between 4 and 15 days post im-
plantation (Fig. 2E). This modificationwas transient since thickness
of the native tissue returned to basal physiological levels after 30
days post-implantation (Fig. 2DeF). On the contrary, the applied
matrix was gradually invaded by resident cells and constantly
remodelled. Patch thickness started decreasing significantly after
only 7 days, while 90 days later was almost completely reabsorbed
(Fig. 2D, F, G). Cell migration into the originally acellular patch was
evident from early time points. Native tissue cell activation was
confirmed by Ki67 analysis: soon after patch implantation, resident
cells began proliferating and migrating toward the acellular matrix
(Fig. 2H), and this process reverted to physiological state 30 days
after treatment (Fig. 2I).

2.3. Myogenic progenitor cell activation

Although the thickening of the native diaphragm after
implanting the ECM-derived scaffold was proved, no significant
difference in fibre cross sectional area (CSA) was found (Fig. 3A, B).
Muscle growth seemed to derive from the generation of new fibres,
as revealed by the presence of embryonic myosin heavy chain
(Myh3) positive fibres in the native diaphragm, located in the re-
gion close to the patch in the earliest time points (Fig. 3E, F),



Fig. 1. Characterization of the diaphragmatic acellular scaffold. (A) Macroscopic appearance of wt diaphragmatic muscle after harvesting (fresh) and after each DET cycle; (B) DNA
quantification (c ¼ cycle); (C) Immunofluorescence of fresh and decellularized tissue after each DET cycle (n ¼ 3) to discriminate remaining nuclei (DAPI) from tissue structure
(Laminin); (D) Nuclei quantification analysing 5 random pictures per tissue sample (n ¼ 3). (E) HeE staining on fresh and 3 DET cycle scaffold; (F) Fresh and decellularized tissue
thickness; (GeI) Immunohistochemistry performed on fresh and 3 DET cycle scaffold to identify and quantify ECM proteins: Masson's Trichrome for collagen, Alcian blue for sGAG
and Elastic-Van Gieson for elastin. Histograms are referred to the correspondent protein quantification; (J) SEM performed on fresh and decellularized scaffold after 3 DET cycles;
(KeM) Stiffness and elastic modulus. *p < .05; **p < .01; ***p < .001; n.s. ¼ not significant by Student t-test. Scale bar ¼ 100 mm.
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emphasizing the triggering effect of applied acellular matrix.
Generation of new fibres was confirmed by the high Myh3 gene
expression rate in treated diaphragms in the earlier time points
when compared to physiological levels (Supplementary Fig. 1).
Furthermore, regenerating centre nucleated fibres were clearly
present in the native tissue throughout all the time points (Fig. 3A).
Generation of new muscle fibres and cellular colonization of patch
were also supported by presence of activated myogenic precursor
cells. From 7 to 30 days after patch implantation, Myf5 positive
muscle precursor cells were located in the acellular matrix,



Fig. 2. In vivo scaffold implantation and local response. (A) Surgical procedure: decellularized matrix was sutured on the ventral side of diaphragm muscle of wt mice; (B)
Macroscopic aspect of the treated diaphragm at day 7 after patch implantation; (C) Schematic representation of tissue arrangement in vivo after patch implantation
(Dph ¼ diaphragm); (D,F) Histological appearance of treated diaphragms after 0, 7, 30 and 90 days from implantation; (E,G) Thickness of native diaphragm and implanted patch
throughout all the time points; (HeI) Immunofluorescence and quantification of proliferating Ki67 þ cells. N ¼ native tissue, P ¼ patch, L ¼ liver. **p < .01; n.s. ¼ not significant by
ANOVA and Student t-test. Scale bar ¼ 100 mm.
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highlighting a massive activation and migration of satellite cells
from the recipient diaphragm into the acellular scaffold (Fig. 3C, D).
The activation of this myogenic population was also supported by
gene expression analysis in implanted muscles that revealed, at
first, a strong induction of myogenic transcription factors such as
Myf5 and Myogenin between 4 and 15 days after treatment, and,
secondly, a successive decrease toward physiological levels in par-
allel with the switching off of the regenerating process
(Supplementary Fig. 1).
2.4. Macrophage response polarization toward an M2 phenotype

In vivo implantation of decellularized scaffold was associated
with a significant increased presence of CD3 and CD4 expressing
cells, especially within the fraction of FoxP3 positive cells
(Fig. 4AeC). In particular, CD3 and CD4 followed a timing-
dependent trend, with a maximum of expression at 7 days post
implantation. At the same time point, higher number of
CD4þFoxP3þ cells was found. As for other cell types, also this
positive immune response revealed a reversible behaviour,
decreasing to comparable level as the untreated muscles at the end
of the analysed period. In parallel, we observed a progressive gain
of macrophage antigen expression (CD68 þ cells; Fig. 4F) and, most
importantly, of M2 polarized cells, as evident by Arginase I
expression, both at protein and gene level (Fig. 4DeI). When
compared with the expression of pro-inflammatory M1 macro-
phage specific markers such as CD86 and Nos2, we obtained a ratio
in favour of M2 anti-inflammatory macrophage population (Fig. 4G,
J), both at protein and gene expression level, confirming the general
remodelling effect.
2.5. Implantation of wild ECM-derived scaffold into an atrophic
diaphragm

To confirm the anti-inflammation and pro-regenerative effect of
implanted decellularized ECM also in a diseased environment, we
treated 3month-oldHSA-Cre, SmnF7/F7 atrophicmice (n¼ 4mice for
each time point, and n ¼ 4 mice for untreated control, 0 days) with



Fig. 3. Myogenic cell activation. (A) Immunostaining for Laminin of treated muscles at different time point; (B) Quantification of fiber cross sectional area (CSA) in sections at the
analysed time points; (CeD) Immunostaining and quantification (% of cells) of Myf5þ precursor cells in treated samples; (EeF) Immunostaining and quantification of newly
generated Myh3þ fibers. N ¼ native tissue, P ¼ patch, L ¼ liver. **p < .01; ***p < .001 by ANOVA and Student t-test; scale bar ¼ 100 mm.

Fig. 4. Immunoreaction and macrophage polarization. (AeC) Representative immunofluorescence (7 days) and quantification of CD3þ, CD4þ and FoxP3þ cells in the time course;
(DeE) Immunofluorescence and quantification of CD86þ (M1 polarized) and Arginase Iþ (M2 polarized) macrophages; (F) Immunofluorescence for pan-macrophages CD68 an-
tigen; (G) Ratio between M1/M2 polarized macrophages calculated on the basis of CD86/ArgI expression; (HeI) Gene expression of Nos2 (M1) and Arginase I (M2) in treated
diaphragms throughout the time points. B2mwas used as housekeeping gene; (J) Ratio between Nos2/ArgI expression. N ¼ native tissue, P ¼ patch, L ¼ liver. **p < .01; ***p < .001;
n.s. ¼ not significant by ANOVA test. Scale bar ¼ 100 mm.
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the same surgical approach described in the previous section.
Histological analyses showed comparable cell invasion and matrix
remodelling as highlighted in the wt mice (Fig. 5A). After patch
implantation, the overall thickness of atrophic diaphragm gradually
increased during the time points reaching the same thickness of the
wt diaphragm (Fig. 5B). The thickness enhancement in HSA-Cre,



Fig. 5. Diaphragm regeneration in atrophic HSA-Cre, SmnF7/F7 mouse model. (A,C) Histological appearance of treated diaphragms after 7, 15, 30 and 90 days from implantation; (B,D)
Thickness of native atrophic diaphragm and implanted patch throughout all the time points; (E,F) CT scan and lung area of untreated (0d) and treated (30d) mice; (G) Mechanical
properties of untreated (0d) and treated (30) atrophic diaphragm; (H) Comparison between diaphragm treated side (90d) and non-treated contralateral (CL) side (90d CL) in terms
of thickness and number of fibers. N ¼ native tissue, P ¼ patch, L ¼ liver. *p < .05; ***p < .001 by Student t-test; scale bar ¼ 100 mm.
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SmnF7/F7 atrophic recipient was delayed in respect to the growth
observed in wt recipient, but notably, a decrease to basal level did
not appear in the analysed period. In parallel, the implanted patch
was greatly reabsorbed with no differences when compared to ki-
netic to the wt implant (Fig. 5C, D). Importantly, HSA-Cre, SmnF7/F7

atrophic mice with healthy acellular matrix displayed amelioration
of the thoracic cage, lung morphology and area 30 days from im-
plantation (Fig. 5E). The thoracic cage of HSA-Cre, SmnF7/F7 mice
showed deformation and limited pulmonary space due to the
atrophic muscles of the chest. At 30 days post-implantation treated
animals demonstrated a rearrangement of the thoracic space with
an increased lung area. Importantly, amelioration of the thoracic
space was also confirmed by mechanical tests. Although treated
(30d) and untreated (0d) atrophic diaphragms possess comparable
deformation ability, elastic modulus demonstrated that 30 days
after patch implantation, treated muscles increased their strain
resistance, acquiring elastic properties comparable to those of
healthy diaphragm (Fig. 5F). Moreover, comparing treated and non-
treated (CL, contralateral) side of the same atrophic diaphragm 90
days post-implantation, it was evident the thickening of native
tissue in the treated area and the increasing of fibres number al-
ways in respect to its contralateral side (Fig. 5G).

Despite the tissue morphological amelioration, especially after
30 days of treatment (Fig. 6A), CSA of atrophic diaphragm fibres
showed no significant differences when compare to untreated
animals, similarly to wt recipients. Nevertheless, there was a dif-
ference among the time points in CSA distribution, since 4 days
after treatment about 80% of fibres possessed an average area of
less than 500 mm2 (Fig. 6B). This data correlates with an up-
regulation of Myh3 gene and protein expression, underling the
same mechanism of new fibre generation as occurred in wt treated
mice (Fig. 6C). Cell activation and proliferation was lower but
prolonged when compared to wt diaphragm response, as high-
lighted by Ki67 staining. Proliferating cells increased significantly at
4 days and remained until 90 days post-implantation (Fig. 6D).
Myogenic cell activation was evident by the enhanced number of
MyoD positive cells detected in the native atrophic diaphragm at
early time points (Fig. 6G) and by increased expression of genes
related with muscle regeneration (Fig. 6H). The inflammatory
response of the native atrophic diaphragm to the implantation of
wt-derived acellular matrix was slightly different in comparison
with a wt recipient. CD86 positive macrophages (M1 polarized)
were already detected in the untreated atrophic diaphragm and
increased after 4 and 7 days from the implantation, however Nos2
expression trend indicated a decrease in M1 macrophage polari-
zation during the treatment period (Fig. 6E, F). Importantly, ArgI
was progressively activated, confirming also in this atrophic mouse
model the pro-regenerative and anti-inflammation effect of the
implanted acellular matrix (Fig. 6E, F).



Fig. 6. Inflammatory response and myogenic cell activation in treated atrophic diaphragm. (A) Immunostaining for Laminin of treated muscles at different time points; (B) CSA fiber
distribution during the time points; (C) Representative immunostaining (4 days) and quantification of Myh3 expression at the different time points; (D,E) Representative im-
munostaining (7 days) and quantification of proliferating Ki67 þ cells; (F) Immunostaining and RealTime PCR quantification of M1 (CD86 and Nos2) and M2 (Arginase I) monocyte
polarization at the different time points; (G) Ratio between M1/M2 polarized macrophages calculated on the basis of Nos2/ArgI expression; (H) Immunostaining and PCR quan-
tification of MyoD þ precursor cells in treated samples. (I) RealTime PCR quantification of Myogenin during the time points; B2mwas used as housekeeping gene. N ¼ native tissue,
P ¼ patch, L ¼ liver. *p < .05; **p < .01 by ANOVA test; scale bar ¼ 100 mm.
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3. Discussion

In this work, we focused on the production and characterization
of a biological scaffold obtained through the DET protocol, with the
aim of using an ECM-derived construct as a patch to promote
regeneration and repair in skeletal muscle diseases. Decellularized
tissues were obtained removing the cellular fraction from fresh
tissues, preserving structure and composition of the original ECM.
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They represent a useful tool for the study of biochemical and
biomechanical properties of the ECM and to fabricate tissue-
specific scaffolds for regenerative medicine application.

The use of decellularized ECM as a patch offers the advantages of
having a substrate that perfectly mimics architecture and organi-
zation of the native tissue and presents the same biochemical
composition, cell homing activation, biomechanical and angiogenic
properties. Using DET protocol, we were able to obtain a well
preserved skeletal muscle matrix that possessed the same protein
composition and distribution of a fresh tissue, but with depletion of
nuclei content. Drastic decrease in DNA quantity and cell number in
the treated tissue is a crucial outcome in decellularization methods
and here we obtained highly significant cell depletion in order to
avoid any in vivo immune-related rejection of the scaffold. Inter-
estingly, histological and ultrastructural analyses demonstrated
that acellular scaffolds maintained intact the myofibres, the major
skeletal muscle component. Preservation of muscle fibres after
decellularization allowed the matrix to have similar structure,
biomechanical properties and elasticity to the fresh tissue, key
features in engineering skeletal muscle tissue. Moreover, a com-
parable stiffness before and after decellularization maintains the
potential of generating physiological stimuli once the scaffold is
seeded with new cells or implanted in vivo. This aspect is of para-
mount importance, as it was demonstrated that different stiffness is
able to drive multiple features of cell behaviour, including prolif-
eration and differentiation [31]. Furthermore, altering or modifying
rigidity of a tissuemay cause pathological fibrosis [32] or contribute
to development and spread out of cancer [33,34]. It is known that
many malignancies are associated with a strong fibrotic reaction,
termed ‘desmoplasia’, which is characterized by an accumulation of
fibrillar collagen types I and III and increased degradation of type IV
collagen [35]. Loss of tissue architecture, altered mechanics,
increased ECM rigidity due to collagen deposition and inflamma-
tion, convey a wrong set of instructions to individual cells, leading
to structural changes in tissue stem cell niche, and allowing cancer
cell survival and proliferation [36].

In vivo implantation of acellular ECM gave rise to changes in the
local muscle characteristics. This was a result of orchestrated events
and processes that range from scaffold degradation to ECM
remodelling by host cells, driven mainly by an immune modulatory
effect caused by the patch, as we previously described in a discor-
dant xenotransplantationmodel with implantation of decellularized
muscle tissues [28]. Cascade activated by this event includes pro-
motion of a local pro-regeneration microenvironment with activa-
tion of M2 polarized macrophages [26], attraction of vessels from
the host tissue [37] and recruitment of stem and progenitor cells to
the site of scaffold placement [38,39]. In this in vivo approach, the
simple application of the patch without any damage or lesion to the
recipient diaphragm induced remodelling in the native tissue.
Firstly, we observed an enlargement of the native diaphragm. This
effect was transient in the wt mousemodel, but consistent and with
an increasing-pattern across all time points in the atrophic mouse
model, that finally showed comparable thickness with a wt dia-
phragm 90 days post-implantation. This physiological reaction was
not due to a compensatory hypertrophy, as it has been demon-
strated with strenuous exercise and severe overloading [40]. Rather
than an increase of fibre CSA, indeed, our study evidenced that the
increase in thickness was accompanied with generation of new
muscle fibres (Myh3 positive), especially in the areas in contact with
the implanted patch. Moreover, we found neuromuscular junctions
in the remodelled patch throughout the time course, as detected
with a�bungarotoxin staining (data not shown), a neuromuscular
toxin that recognizes nicotinic acetylcholine receptors, indicating a
complete functional fusion of the applied matrix with the recipient
diaphragm. This phenomenon points out how an ECM-derived
scaffold alone could be used as a tool for promoting local regener-
ation and generation of new functional tissue. Together with the
thickening of native diaphragm, the applied patch was constantly
remodelled and reabsorbed by resident cells during the time points,
confirming the degradation fate that classically distinguishes bio-
logical scaffolds [41].

Cell migration to the scaffold also followed a precise pattern.
Firstly, CD31 þ cells and small capillaries vWfþ were found within
the patch (data not shown), indicating that ECM still possessed
angiogenic factors necessary to attract vessels and to allow migra-
tion and repopulation by host cells [37]. Secondly, as expected, both
in wt and atrophic mouse models, cells migrating to the patch were
predominantly myogenic, a process that started with the activation
of resident muscle stem cells in the native diaphragm. These acti-
vated progenitor cells seemed to act with a double behaviour: (a)
migration into the implanted scaffold, as highlighted by presence of
Myf5 and MyoD positive cells, and (b) generation of new muscle
fibres in the native diaphragm, confirmed by local expression of
embryonic myosin, normally absent in healthy and mature rodent
muscles [42]. Importantly, we found a distinct and exclusive tem-
porary overexpression of Myf5 in wt and MyoD in atrophic model,
both at protein and gene expression level. Nevertheless, the physi-
ological final result (i.e. generation of new muscle fibres and local
thickening of treated muscles) was comparable in the two mouse
models. This finding indicates that there is a different myogenic
activation pathway between healthy and atrophic muscles, sup-
porting the data that these two transcription factors can partially
compensate one another during development [43e45], maintaining
at the same time distinct and specific functions [46]. Of remarkable
importance, in the HSA-Cre, SmnF7/F7 mouse model, the positive ef-
fect of implanted patch was visible macroscopically with ameliora-
tion of the chest anatomy and increased lung area. Furthermore,
improvement in the atrophic conditionwas detected alsomeasuring
the elastic modulus that became similar to that of wt mice.

Certainly, the largest number of cells found in the colonized
patch was composed of monocytes and CD68 þ cells, especially in
the early time points. Together with satellite cells, also myeloid
cells represent a key player in tissue regeneration, in particular in
injured muscles. Researchers are investigating whether the
manipulation of the latest cell population can provide novel stra-
tegies to potentiate stem cell function in muscle regeneration
[47e49]. It is known that macrophages display a broad spectrum of
phenotypic diversity that can be modulated by soluble factors
[50e53], or by changing cell shape and connections [54], with a
binary readout improving (M2 polarized) or blocking (M1 polar-
ized) regeneration [49]. In general, the implantation of ECM-
derived scaffold is characterized by immediate mononuclear cell
infiltration [55]. Interestingly, in this event there is a lack of usual
cytotoxic mediators of inflammation and a consequent formation of
polarized type 2 T lymphocytes [56]. Together withmodulation of T
response, there is a rapid shift of macrophage polarization toward
M2-like phenotype [26,27], occurred both in allogenic and xeno-
geneic transplantation models [28]. In our in vivo experiments, we
obtained an immediate polarization of macrophages towards pro-
regenerative M2 type both in wt and atrophic mice, although in
the latter therewas a chronic inflammatory condition characterized
by substantial presence of M1 macrophages at basal level and
derived by the persistent myofibres' degeneration [57,58]. This
polarization was confirmed by the expression of Arginase I in cells
invading the patch and by the ratio of Nos2 and Arginase I gene
expression always in favour of the second. In parallel, we found an
increased presence of CD4þFoxP3þ cells in treated areas, a
phenotype generally associated with transplant acceptance [28,59].
Up to now, less is known about the hypothesis that the process of
decellularization exposes or unmasks certain surface peptides and
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molecules on the scaffold that modulate the immune response
[60e63]. One reliable explanation is the ability of the scaffold to
activate at the beginning in the host a foreign body reaction, rapidly
shifted in a pro-regenerative mechanism due to presence of cyto-
kines and growth factors in the decellularizedmatrix that stimulate
(together with T helper) in a very short time, macrophages, endo-
thelial, and muscle precursor cells. It has been already demon-
strated in vitro that products derived from ECM degradation
promote M2-like macrophage phenotype polarization [27].
Although it is not clear yet what degradation product or cytokine
remains within the scaffold after decellularization, the biochemical
effect of these compounds is effective enough in activating the M2
macrophage polarization in vivo, triggering a cascade in loop that
enhances the number and the effect of anti-inflammatory cells
throughout all the time points. Moreover, macrophages stimulated
with ECM products have been shown to promote migration and
differentiation of skeletal muscle progenitor cells [27,29]. This ef-
fect was evident in our in vivomodel, both in wt and atrophic mice,
where M2 macrophage polarization and Myf5/MyoD positive cells
were consequently activated.

The amelioration of a genetically impaired muscle, although
only local and likely transient, after a simple implantation of a
healthy muscle-derived natural matrix, is a new pivotal outcome in
understanding the potential of using ECM-derived scaffolds in tis-
sue engineering. This effect was naturally achieved in wt mice,
resulting in diaphragm local thickening when in contact with the
ECM-derived matrix. In the diseased HSA-Cre, SmnF7/F7 mouse
model the immunomodulatory-guided effect was also confirmed. It
is worth of notice that despite starting from an impaired muscle
characterized by chronic inflammation and dysfunctional muscle
homeostasis, the pro-regenerative effect activated by the healthy
ECM-derived scaffold produced a strong improvement in the
anatomy of the chest and physiology of the diaphragmwith elastic
performances comparable with healthy muscles. This approach
gives new inside about using natural-derived scaffolds developed
from tissue-specific ECM and confers high potential to future pro-
jects that include seeding of precursor cells into the scaffold prior
implantation. Indeed, it is possible that future therapies may
combine the transplantation of healthy cells with the delivery of a
“healthy” matrix.

In conclusion, this work shows the development and charac-
terization of a tissue-specific ECM-derived scaffold that displays
fundamental features for tissue regenerative and repair applica-
tions. We have shown that ECM provides anti-inflammation, pro-
regenerative and cell homing properties in both healthy and
diseased muscles. Besides their use for tissue engineering, we
postulate that natural scaffolds are also promising candidate for the
treatment of muscle diseases. This approach includes the use of
acellular scaffolds also for in vitro studies to analyse cell engraft-
ment, proliferation, migration and differentiation using seeding
techniques for re-cellularisation purposes, in order to reproduce a
viable functional muscle in culture. Further work will be essential
to understand the role of all components of the ECM in its biological
effect in vivo and how these characteristics affect cell behaviour
in vitro and in vivo. Cell delivery together with the matrix may
further improve affected diaphragms, potentially becoming the
optimal approach for future clinical applications.

4. Methods

4.1. Animals

All surgical procedures and animal husbandry were carried out
in accordance with University of Padua's Animal care and Use
Committee (CEASA, protocol number 67/2011 approved on 21st
September 2011) and were communicated to theMinistry of Health
and local authorities in accordance with the Italian Law on the use
of experimental animals (DL n. 16/92 art. 5). The following animals
were used: 8e12 week-old male and female C57BL/6J mice (wt
mice) as donors (diaphragms for scaffolds generation) and as re-
cipients; HSA-Cre,SmnF7/F7 as the host atrophic model.

4.2. Diaphragm decellularization

Diaphragmmuscle obtained fromwt mice was washed in sterile
phosphate buffered saline 1X (PBS) and conserved in PBS con-
taining 1% penicillin-streptomycin solution (PBSeP/S). Diaphragms
destined to decellularization process were treated with one to four
DETcycles. Each DETcycle was composed of deionizedwater at 4 �C
for 24 h, 4% sodium deoxycholate (Sigma) at room temperature (RT)
for 4 h, and 2000 kU DNase-I (Sigma) in 1 M NaCl (Sigma) at RT for
3 h, after washing in water. After decellularization, matrices were
washed for at least 3 days in deionized sterile water and preserved
at 4 �C in PBS-P/S or immediately analysed.

4.3. DNA isolation and quantification

To assess total DNA content within the native diaphragm and
decellularized matrices, specimens were treated using DNeasy
Blood&Tissue kit (Qiagen) under manufacturer's instruction. DNA
samples were then quantified using Nanodrop 2000 spectropho-
tometer (Thermo Scientific, USA).

4.4. Immunohistochemistry and immunofluorescence

Frozen section (8e10 mm thick) were stained with H-E kit for
rapid frozen section, Masson's Trichrome with aniline blue kit,
Alcian blue pH 2.5 kit and WEIGERT - VAN GIESON for elastic fibres
and connectivum (long method) (all from Bio-Optica, UK) under
manufacturer's instruction. For immunofluorescence analysis, sec-
tions were permealised with 0.5% Triton X-100, blocked with 10%
HS and incubated with primary antibodies, then slides were
washed and incubated with labelled secondary Alexa Fluor sec-
ondary antibodies as listed in Supplementary Table 1. Finally, nuclei
were counterstained with fluorescent mounting medium plus
100 ng/ml 40,6-diamidino-2-phenylindole (DAPI) (SigmaeAldrich).
For each diaphragm, random pictures were collected with a direct
microscope.

4.5. ECM component quantification

Collagen, sulfated glycosaminoglycan (GAGs) and elastin con-
tent on fresh and decellularized diaphragms were quantified using
respectively the SIRCOL collagen assay, Blyscan GAG Assay Kit and
Fastin Elastin Assay Kit (all fromBiocolor, UK) undermanufacturer's
instruction.

4.6. Scanning electron microscopy

Samples were fixed in 2% glutaraldehyde in 0.1 M phosphate;
following washing they were cut into segments of approximately
1 cm length and cryoprotected in 25% sucrose, 10% glycerol in
0.05 M PBS (pH 7.4) for 2 h, then fast frozen. The samples were then
placed back into the cryoprotectant at RTand allowed to thaw. After
washing, the material was fixed in 1% OsO4/0.1 M phosphate buffer
(pH 7.3) and washed again. After rinsing with deionized water,
specimens were dehydrated in a graded ethanol-water series to
100% ethanol, critical point dried using CO2 and finally mounted on
aluminium stubs using sticky carbon taps. Samples were mounted
and coated with a thin layer of Au/Pd (approximately 2 nm thick)
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using a Gatan ion beam coater. Images were recorded with a Jeol
7401 FEG scanning electron microscope.
4.7. Mechanical test

The specimens were subjected to uniaxial tension until failure.
This test records the displacement applied to the specimen versus
corresponding value of tensile force. The nominal strain was ob-
tained by normalizing the displacement with the initial gauge
length of the specimen; the nominal stress as force for unit of initial
transverse section. The response of the tissue was evaluated in
terms of membrane force and Young's modulus. The membrane
force is the force per unit width of the specimen. The ratio of
nominal stress to nominal strain up to 5% was considered as the
Young's modulus. Mechanical tests were performed in the Planar
Biaxial TestBench Test Instrument Bose® Electro-Force (USA) at RT
(20 ± 1 �C). Specimens in the form of strips with average width of
4 mm and 5 mm gauge length were elongated at a constant strain
rate of 0.1 s�1. The thickness of the samples was measured from the
histologic analysis and the width by using digital images analysis.
Four or five samples were considered for each evaluated tissue.
4.8. In vivo implantation

Wt and HSA-Cre,SmnF7/F7 mice were gently handled in general
anaesthesiawith O2 and isofluorane (Forane, Merial, IT) (3e3.5% for
induction and, subsequently, 2% for maintenance) inhalation via
facemask, potentiated with the analgesic tramadol. After a 3 cm
long median superior incision, the diaphragm was visualized. A
decellularized patch of about 5 � 3 mmwas placed onto the native
diaphragm, and fixed with three or four stitches of Prolene 9/0.
Organs were then repositioned into the abdominal cavity, the
abdominal wall was closed in two layers and the animals left to
wake up under a heating lamp. Afterwards, the animals were
checked to ensure arousal within 10 min after surgery and moved
back to their cages monitored for activity, ability to drink and eat
and for signs of bleeding or infection. Analgesics (as painkillers),
antibiotics and saline solution (for rehydratation) were adminis-
tered. Mice were euthanized by cervical dislocation at 4, 7, 15, 30
and 90 days post implantation.
4.9. MicroCt scan

Prior to imaging, mice were anesthetized (with a mixture of
Rompum and Zoletil given i.p.), and imaged on the eXplore Locus SP
(GE Healthcare). Image processing and data analysis were per-
formed using eXplore MicroView software 2.0 (GE Healthcare).
4.10. Real time PCR

Total RNA has been extracted using RNeasy Plus Mini kit (QIA-
GEN GmbH) following the supplier's instructions. RNA has been
quantified with a ND-2000 spectrophotometer and 1 mg has been
retrotranscripted with SuperScript II and related products (all from
Life Technologies) in a 20 ml reaction. Real-time PCR reactions were
performed using a LightCycler II (Roche, Monza, Italy). Reactions
have been carried out in triplicate using 4 ml of FASTSTART SYBR
GREEN MASTER (Roche) and 2 ml of primers mix FW þ REV (final
concentration, 300/300 nM) in a final volume of 20 ml. Serial di-
lutions of a positive control sample have been used to create a
standard curve for the relative quantification. The amount of each
mRNA has been normalized for the content in b2-microglobulin.
Primer sequences are listed in Supplementary Table 2.
4.11. Statistical analysis

Data are expressed as means ± SEM, or as means ± SD. For
immunofluorescence and immunohistochemical analyses, at least
15 random high-power field areas were considered per each ana-
lysed muscle. Statistical significance was determined using an
equal-variance Student's t test, two-way analysis of variance
(ANOVA) test, and the ManneWhitney U test (for quantitative real
time-polymerase chain reaction [qRT-PCR] analyses). A p value
below 0.05 was considered to be statistically significant.
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