The Kac-Ward formula allows to compute the Ising partition function on any
finite graph G from the determinant of 2^{2g} matrices, where g is the genus of
a surface in which G embeds. We show that in the case of isoradially embedded
graphs with critical weights, these determinants have quite remarkable
properties. First of all, they satisfy some generalized Kramers-Wannier
duality: there is an explicit equality relating the determinants associated to
a graph and to its dual graph. Also, they are proportional to the determinants
of the discrete critical Laplacians on the graph G, exactly when the genus g is
zero or one. Finally, they share several formal properties with the Ray-Singer
\bar\partial-torsions of the Riemann surface in which G embeds.Comment: 30 pages, 10 figures; added section 4.4 in version