9 research outputs found

    Assessment of iontophoretic and passive ungual penetration by laser scanning confocal microscopy

    Get PDF

    Influence of Chemical Enhancers and Iontophoresis on the In Vitro Transdermal Permeation of Propranolol: Evaluation by Dermatopharmacokinetics

    Full text link
    [EN] The aims of this study were to assess, in vitro, the possibility of administering propranolol transdermally and to evaluate the usefulness of the dermatopharmacokinetic (DPK) method in assessing the transport of drugs through stratum corneum, using propranolol as a model compound. Four chemical enhancers (decenoic and oleic acid, laurocapram, and R-(+)-limonene) and iontophoresis at two current densities, 0.25 and 0.5 mA/cm(2) were tested. R-(+)-limonene, and iontophoresis at 0.5 mA/cm(2) were proven to be the most efficient in increasing propranolol transdermal flux, both doubled the original propranolol transdermal flux. Iontophoresis was demonstrated to be superior than the chemical enhancer because it allowed faster delivery of the drug. The DPK method was sufficiently sensitive to detect subtle vehicle-induced effects on the skin permeation of propranolol. The shorter duration of these experiments and their ability to provide mechanistic information about partition between vehicle and skin and diffusivity through skin place them as practical and potentially insightful approach to quantify and, ultimately, optimize topical bioavailability.This research was funded by Ministerio de Ciencia e Innovación (AP2007-03456) and the Universidad CEU Cardenal Herrera.Calatayud-Pascual, M.; Sebastian-Morelló, M.; Balaguer-Fernandez, C.; Delgado-Charro, M.; Lopez-Castellano, A.; Merino Sanjuán, V. (2018). Influence of Chemical Enhancers and Iontophoresis on the In Vitro Transdermal Permeation of Propranolol: Evaluation by Dermatopharmacokinetics. Pharmaceutics. 10(4):1-15. https://doi.org/10.3390/pharmaceutics10040265S11510

    Evaluation of skin absorption of drugs from topical and transdermal formulations

    Get PDF
    ABSTRACT The skin barrier function has been attributed to the stratum corneum and represents a major challenge in clinical practice pertaining to cutaneous administration of drugs. Despite this, a large number of bioactive compounds have been successfully administered via cutaneous administration because of advances in the design of topical and transdermal formulations. In vitro and in vivo evaluations of these novel drug delivery systems are necessary to characterize their quality and efficacy. This review covers the most well-known methods for assessing the cutaneous absorption of drugs as an auxiliary tool for pharmaceutical formulation scientists in the design of drug delivery systems. In vitro methods as skin permeation assays using Franz-type diffusion cells, cutaneous retention and tape-stripping methods to study the cutaneous penetration of drugs, and in vivo evaluations as pre-clinical pharmacokinetic studies in animal models are discussed. Alternative approaches to cutaneous microdialysis are also covered. Recent advances in research on skin absorption of drugs and the effect of skin absorption enhancers, as investigated using confocal laser scanning microscopy, Raman confocal microscopy, and attenuated total reflectance Fourier-transform infrared spectroscopy, are reviewed
    corecore