12 research outputs found

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km <sup>2</sup> resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km <sup>2</sup> pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Millennial scale impact on the marine biogeochemical cycle of mercury from early mining on the Iberian Peninsula

    Get PDF
    The high-resolution mercury record of a Posidonia oceanica mat in the northwest Mediterranean provides an unprecedented testimony of changes in environmental mercury (Hg) loading to the coastal marine environment over the past 4315 yr BP. The period reconstructed made it possible to establish tentative preanthropogenic background Hg levels for the area (6.8 +/- 1.5 ng g(-1) in bulk sediments). A small, but significant, anthropogenic Hg increase was identifiable by similar to 2500 yr BP, in agreement with the beginning of intense mining in Spain. Changes in the record suggest four major periods of anthropogenic Hg pollution inputs to the Mediterranean: first, during the Roman Empire (2100-1800 yr BP); second, in the Late Middle Ages (970-650 yr BP); third, in the modern historical era (530-380 yr BP); and fourth, in the industrial period (last 250 years), with Hg concentrations two-, four-, five-, and tenfold higher than background concentrations, respectively. Hg from anthropogenic sources has dominated during the last millennium (increase from similar to 12 to similar to 100 ng g(-1)), which can be related to the widespread historical exploitation of ore resources on the Iberian Peninsula. The chronology of Hg concentrations in the mat archive, together with other Hg pollution records from the Iberian Peninsula, suggests regional-scale Hg transport and deposition and shows earlier marine Hg pollution than elsewhere in Europe. Moreover, the mat also records a higher number of historic contamination phases, in comparison with other natural archives, probably due to the fact that the bioaccumulating capacity of P. oceanica magnify environmental changes in Hg concentrations. In this study, we demonstrate the uniqueness of P. oceanica meadows as a long-term archive recording trends in Hg abundance in the marine coastal environment, as well as its potential role in the Mediterranean as a long-term Hg sink

    SoilTemp: A global database of near-surface temperature

    No full text

    Progress and Promise in using Arabidopsis to Study Adaptation, Divergence, and Speciation

    No full text
    Fundamental questions remain to be answered on how lineages split and new species form. The Arabidopsis genus, with several increasingly well characterized species closely related to the model system A. thaliana, provides a rare opportunity to address key questions in speciation research. Arabidopsis species, and in some cases populations within a species, vary considerably in their habitat preferences, adaptations to local environments, mating system, life history strategy, genome structure and chromosome number. These differences provide numerous open doors for understanding the role these factors play in population divergence and how they may cause barriers to arise among nascent species. Molecular tools available in A. thaliana are widely applicable to its relatives, and together with modern comparative genomic approaches they will provide new and increasingly mechanistic insights into the processes underpinning lineage divergence and speciation. We will discuss recent progress in understanding the molecular basis of local adaptation, reproductive isolation and genetic incompatibility, focusing on work utilizing the Arabidopsis genus, and will highlight several areas in which additional research will provide meaningful insights into adaptation and speciation processes in this genus
    corecore