66 research outputs found

    Decrease of sexual organ reciprocity between heterostylous primrose species, with possible functional and evolutionary implications

    Get PDF
    Background and Aims Heterostyly is a floral polymorphism that has fascinated evolutionary biologists since Darwin's seminal studies on primroses. The main morphological characteristic of heterostyly is the reciprocal placement of anthers and stigmas in two distinct (distyly) floral morphs. Variation in the degree of intermorph sexual reciprocity is relatively common and known to affect patterns of pollen transfer within species. However, the partitioning of sexual organ reciprocity within and between closely related species remains unknown. This study aimed at testing whether intermorph sexual reciprocity differs within vs. between primrose species that hybridize in nature and whether the positions of sexual organs are correlated with other floral traits. Methods Six floral traits were measured in both floral morphs of 15 allopatric populations of Primula elatior, P. veris and P. vulgaris, and anther-stigma reciprocity was estimated within and between species. A combination of univariate and multivariate approaches was used to test whether positions of reproductive organs were less reciprocal between than within species, to assess correlations between sexual organ positions and other corolla traits, and to quantify differences between morphs and species. Key Results The three species were morphologically well differentiated in most floral traits, except that P. veris and P. vulgaris did not differ significantly in sexual organ positions. Overall, lower interspecific than intraspecific sexual organ reciprocity was detected. This decrease was marked between P. elatior and P. vulgaris, intermediate and variable between P. elatior and P. veris, but negligible between P. veris and P. vulgaris. Conclusions Differences in anther and stigma heights between the analysed primrose species were of the same magnitude or larger than intraspecific differences that altered pollen flow within other heterostylous systems. Therefore, it is possible to suggest that considerable reductions of sexual organ reciprocity between species may lower interspecific pollen flow, with potential effects on reproductive isolatio

    Prevalence and relationship of endosymbiotic Wolbachia in the butterfly genus Erebia

    Get PDF
    Wolbachia is an endosymbiont common to most invertebrates, which can have significant evolutionary implications for its host species by acting as a barrier to gene flow. Despite the importance of Wolbachia, still little is known about its prevalence and diversification pattern among closely related host species. Wolbachia strains may phylogenetically coevolve with their hosts, unless horizontal host-switches are particularly common. We address these issues in the genus Erebia, one of the most diverse Palearctic butterfly genera.; We sequenced the Wolbachia genome from a strain infecting Erebia cassioides and showed that it belongs to the Wolbachia supergroup B, capable of infecting arthropods from different taxonomic orders. The prevalence of Wolbachia across 13 closely related Erebia host species based on extensive population-level genetic data revealed that multiple Wolbachia strains jointly infect all investigated taxa, but with varying prevalence. Finally, the phylogenetic relationships of Wolbachia strains are in some cases significantly associated to that of their hosts, especially among the most closely related Erebia species, demonstrating mixed evidence for phylogenetic coevolution.; Closely related host species can be infected by closely related Wolbachia strains, evidencing some phylogenetic coevolution, but the actual pattern of infection more often reflects historical or contemporary geographic proximity among host species. Multiple processes, including survival in distinct glacial refugia, recent host shifts in sympatry, and a loss of Wolbachia during postglacial range expansion seem to have jointly shaped the complex interactions between Wolbachia evolution and the diversification of its host among our studied Erebia species

    Different molecular changes underlie the same phenotypic transition: Origins and consequences of independent shifts to homostyly within species

    Full text link
    The repeated transition from outcrossing to selfing is a key topic in evolutionary biology. However, the molecular basis of such shifts has been rarely examined due to lack of knowledge of the genes controlling these transitions. A classic example of mating system transition is the repeated shift from heterostyly to homostyly. Occurring in 28 angiosperm families, heterostyly is characterized by the reciprocal position of male and female sexual organs in two (or three) distinct, usually self-incompatible floral morphs. Conversely, homostyly is characterized by a single, self-compatible floral morph with reduced separation of male and female organs, facilitating selfing. Here, we investigate the origins of homostyly in Primula vulgaris and its microevolutionary consequences by integrating surveys of the frequency of homostyles in natural populations, DNA sequence analyses of the gene controlling the position of female sexual organs (CYPᵀ), and microsatellite genotyping of both progeny arrays and natural populations characterized by varying frequencies of homostyles. As expected, we found that homostyles displace short-styled individuals, but long-style morphs are maintained at low frequencies within populations. We also demonstrated that homostyles repeatedly evolved from short-styled individuals in association with different types of loss-of- function mutations in CYPᵀ. Additionally, homostyly triggers a shift to selfing, promoting increased inbreeding within and genetic differentiation among populations. Our results elucidate the causes and consequences of repeated transitions to homostyly within species, and the putative mechanisms precluding its fixation in P. vulgaris. This study represents a benchmark for future analyses of losses of heterostyly in other angiosperms

    Plant growth forms dictate adaptations to the local climate

    Get PDF
    Adaptive radiation is a significant driver of biodiversity. Primarily studied in animal systems, mechanisms that trigger adaptive radiations remain poorly understood in plants. A frequently claimed indicator of adaptive radiation in plants is growth form diversity when tied to the occupation of different habitats. However, it remains obscure whether morphological adaptations manifest as growth form diversity per se or as its constituent traits. We use the classic Aeonium radiation from the Canary Islands to ask whether adaptation across climatic space is structured by growth form evolution. Using morphological sampling with site-associated climate in a phylogenetic context, we find that growth forms dictate adaptations to the local environment. Furthermore, we demonstrate that the response of specific traits to analogous environments is antagonistic when growth forms are different. This finding suggests for the first time that growth forms represent particular ecological functions, allowing the co-occurrence of closely related species, being a product of divergent selection during evolution in sympatry.info:eu-repo/semantics/publishedVersio

    Inter- and intra-island speciation and their morphological and ecological correlates in Aeonium (Crassulaceae), a species-rich Macaronesian radiation

    Get PDF
    Background and Aims The most species-rich and ecologically diverse plant radiation on the Canary Islands is the Aeonium alliance (Crassulaceae). In island radiations like this, speciation can take place either within islands or following dispersal between islands. Aiming at quantifying intra- and inter-island speciation events in the evolution of Aeonium, and exploring their consequences, we hypothesized that (1) intra-island diversification resulted in stronger ecological divergence of sister lineages, and that (2) taxa on islands with a longer history of habitation by Aeonium show stronger ecological differentiation and produce fewer natural hybrids. Methods We studied the biogeographical and ecological setting of diversification processes in Aeonium with a fully sampled and dated phylogeny inferred using a ddRADseq approach. Ancestral areas and biogeographical events were reconstructed in BioGeoBEARS. Eleven morphological characters and three habitat characteristics were taken into account to quantify the morphological and ecological divergence between sister lineages. A co-occurrence matrix of all Aeonium taxa is presented to assess the spatial separation of taxa on each island. Key Results We found intra- and inter-island diversification events in almost equal numbers. In lineages that diversified within single islands, morphological and ecological divergence was more pronounced than in lineages derived from inter-island diversification, but only the difference in morphological divergence was significant. Those islands with the longest history of habitation by Aeonium had the lowest percentages of co-occurring and hybridizing taxon pairs compared with islands where Aeonium arrived later. Conclusions Our findings illustrate the importance of both inter- and intra-island speciation, the latter of which is potentially sympatric speciation. Speciation on the same island entailed significantly higher levels of morphological divergence compared with inter-island speciation, but ecological divergence was not significantly different. Longer periods of shared island habitation resulted in the evolution of a higher degree of spatial separation and stronger reproductive barriers.info:eu-repo/semantics/publishedVersio

    Taxonomy based on science is necessary for global conservation

    Get PDF
    Peer reviewe

    Speciation through chromosomal fusion and fission in Lepidoptera

    Get PDF
    Changes in chromosome numbers may strongly affect reproductive barriers, because individuals heterozygous for distinct karyotypes are typically expected to be at least partially sterile or to show reduced recombination. Therefore, several classic speciation models are based on chromosomal changes. One import mechanism generating variation in chromosome numbers is fusion and fission of existing chromosomes, which is particularly likely in species with holocentric chromosomes, i.e. chromosomes that lack a single centromere. Holocentric chromosomes evolved repeatedly across the tree of life, including in Lepidoptera. Although changes in chromosome numbers are hypothesized to be an important driver of the spectacular diversification of Lepidoptera, comparative studies across the order are lacking. We performed the first comprehensive literature survey of karyotypes for Lepidoptera species since the 1970s and tested if, and how, chromosomal variation might affect speciation. Even though a meta-analysis of karyological differences between closely related taxa did not reveal an effect on the degree of reproductive isolation, phylogenetic diversification rate analyses across the 16 best-covered genera indicated a strong, positive association of rates of chromosome number evolution and speciation. These findings suggest a macroevolutionary impact of varying chromosome numbers in Lepidoptera and likely apply to other taxonomic groups, especially to those with holocentric chromosomes. This article is part of the theme issue 'Towards the completion of speciation: the evolution of reproductive isolation beyond the first barriers'

    Carl Friedrich Hagenbach (1771-1849) und seine "Basler Flora" im historischen Kontext

    No full text
    Carl Friedrich Hagenbach (1771–1849) and his “Flora of Basel” in its historic context: The floristic exploration of the surroundings of Basel (Switzerland) began in 1622 with the “Catalogus plantarum circa Basileam sponte nascentium” of Caspar Bauhin, one of the first comprehensive local floras worldwide. In 1821, almost 200 years later, Carl Friedrich Hagenbach, successor of Werner De Lachenal as the professor of Botany at the University of Basel, published the “Tentamen Florae basileensis” in an effort to carefully document all occurrences of plant species in the greater region of Basel in the first half of the 19th century. Hagenbachs Flora is structured according to the Linnean sexual system and refers to the names (polynomials) used by Caspar Bauhin in his Flora of Basel of 1622. Therefore, Hagenbachs “Tentamen” mediates between the beginnings of modern Botany in the 16th century and scientific plant taxonomy and systematics as it developed after Linnaeus. The relative completeness of the account of the regional flora makes the “Tentamen” an important milestone, as it represents a time period before the industrial era and before major changes in town and country planning, including the correction of waterbodies. Thereafter, the associated decline in landscape and habitat diversity caused a loss of many native plant species. Here, we summarize the available biographic knowledge on C. F. Hagenbach, the process of compilation of his flora, and we highlight the significance of his work in the historic context of the floristic exploration of the surroundings of Basel, in Switzerland and Europe

    Decrease of sexual organ reciprocity between heterostylous primrose species, with possible functional and evolutionary implications

    No full text
    † Background and Aims Heterostyly is a floral polymorphism that has fascinated evolutionary biologists since Darwin's seminal studies on primroses. The main morphological characteristic of heterostyly is the reciprocal placement of anthers and stigmas in two distinct (distyly) floral morphs. Variation in the degree of intermorph sexual reciprocity is relatively common and known to affect patterns of pollen transfer within species. However, the partitioning of sexual organ reciprocity within and between closely related species remains unknown. This study aimed at testing whether intermorph sexual reciprocity differs within vs. between primrose species that hybridize in nature and whether the positions of sexual organs are correlated with other floral traits. † Methods Six floral traits were measured in both floral morphs of 15 allopatric populations of Primula elatior, P. veris and P. vulgaris, and anther -stigma reciprocity was estimated within and between species. A combination of univariate and multivariate approaches was used to test whether positions of reproductive organs were less reciprocal between than within species, to assess correlations between sexual organ positions and other corolla traits, and to quantify differences between morphs and species. † Key Results The three species were morphologically well differentiated in most floral traits, except that P. veris and P. vulgaris did not differ significantly in sexual organ positions. Overall, lower interspecific than intraspecific sexual organ reciprocity was detected. This decrease was marked between P. elatior and P. vulgaris, intermediate and variable between P. elatior and P. veris, but negligible between P. veris and P. vulgaris. † Conclusions Differences in anther and stigma heights between the analysed primrose species were of the same magnitude or larger than intraspecific differences that altered pollen flow within other heterostylous systems. Therefore, it is possible to suggest that considerable reductions of sexual organ reciprocity between species may lower interspecific pollen flow, with potential effects on reproductive isolation
    corecore