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Plant growth forms dictate
adaptations to the local climate
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Gudrun Kadereit4,5, Cristina Branquinho1

and Jurriaan M. de Vos2
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2Department of Environmental Sciences – Botany, University of Basel, Basel, Switzerland, 3Linking
Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA),
Universidade de Lisboa, Lisbon, Portugal, 4Botanischer Garten München-Nymphenburg und
Botanischen Staatssammlung, Staatliche Naturwissenschaftliche Sammlungen Bayerns,
Munich, Germany, 5Prinzessin Therese von Bayern Lehrstuhl für Systematik, Biodiversität &
Evolution der Pflanzen, Ludwig-Maximilans-Universität München, Munich, Germany
Adaptive radiation is a significant driver of biodiversity. Primarily studied in

animal systems, mechanisms that trigger adaptive radiations remain poorly

understood in plants. A frequently claimed indicator of adaptive radiation in

plants is growth form diversity when tied to the occupation of different habitats.

However, it remains obscure whether morphological adaptations manifest as

growth form diversity per se or as its constituent traits. We use the classic

Aeonium radiation from the Canary Islands to ask whether adaptation across

climatic space is structured by growth form evolution. Using morphological

sampling with site-associated climate in a phylogenetic context, we find that

growth forms dictate adaptations to the local environment. Furthermore, we

demonstrate that the response of specific traits to analogous environments is

antagonistic when growth forms are different. This finding suggests for the first

time that growth forms represent particular ecological functions, allowing the

co-occurrence of closely related species, being a product of divergent

selection during evolution in sympatry.

KEYWORDS

adaptive radiation, Aeonium, Canary Islands, Crassulaceae, ecological adaptations,
trait evolution
Introduction

Adaptive radiations are the source of much of the biodiversity on Earth, resulting

from the evolution of phenotypic diversity in response to ecological shifts within a

rapidly multiplying lineage (Grant, 1981; Schluter, 2000; Givnish, 2015). Examples such

as the Darwin finches from the Galapagos Islands, the Anolis lizards of the Greater
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Antilles and the cichlid fishes from East African lakes

demonstrate how adaptations to the local environment result

in a rapid accumulation of morphological and ecological

diversity (Grant, 1981; Losos et al., 1998; Schluter, 2000;

Emerson, 2002; Grant and Grant, 2008; Losos and Ricklefs,

2009; Feiner et al., 2021; Ronco et al., 2021).

In plants, adaptive radiations remain relatively poorly

understood, as the particular associations between

morphological and ecological diversity of species remain

elusive (Schenk, 2021). Growth forms have been proposed as

plant adaptations to the environment under evolutionary

radiations to facilitate the colonization of different habitats

(Lems, 1960; Rowe and Speck, 2005; Dunbar-Co et al., 2008;

Schenk et al., 2008; Anest et al., 2021). Plant growth forms are

frequently recognized as suits of individual plant traits that

jointly implement some ecological role and, consequently, are

generally interpreted as adaptations to the environment, such as

high winds, erratic rainfall regimes, grazing, or frost (Rowe and

Speck, 2005; Santiago and Wright, 2007; Schenk et al., 2008;

Gardiner et al., 2016; Anest et al., 2021). While some authors

distinguish growth form (the architectural type) and life form

(the phenotypic result of that architecture with the environment)

(Rauh, 1978), growth form disparity is consistently prevalent in

well-known putative adaptive radiations, such as the Hawaiian

silversword alliance (Asteraceae) (Carr, 1987; Robichaux et al.,

1990; Blonder et al., 2016; Landis et al., 2018), the Hawaiian

lobeliads (Campanulaceae) (Givnish et al., 2004; Givnish et al.,

2008; Givnish, 2010) or the Andean Lupinus (Fabaceae)

(Drummond, 2008; Drummond et al., 2012; Hughes and

Atchison, 2015; Nevado et al., 2016; Contreras-Ortiz et al.,

2018). Clear examples of recurrent evolution of growth forms

in particular environments include small-stature shrubs on

tropical mountains (Nürk et al., 2013; Gehrke et al., 2016),

succulent plants in seasonally dry environments (Ringelberg

et al., 2020) or cushion plants in the alpine biome (Körner

et al., 2021), where structural aspects of plant form vary in

association with other traits (e.g., leaf size, number, and

thickness) (Prusinkiewicz et al . , 2007; Harder and

Prusinkiewicz, 2013). However, growth form diversity can also

arise through the evolution of divergent ecological roles

(Dunbar-Co et al., 2008), e.g., perennial herbs, shrubs, trees,

and lianas may co-occur within a forest. This suggests that

growth form disparity may arise from divergent selection

resulting from complex biotic and abiotic interactions. Overall,

the role of growth form diversity in plant adaptive radiations

remains largely untested, as phenotype-environment relations of

growth forms remain mostly undocumented (Schluter, 2000;

Anest et al., 2021).

Aeonium (Crassulaceae) diversified on the Canary Islands

(~8 Mya) throughout a multitude of habitats, resulting in the

most speciose Canarian plant genus (Kim et al., 2008; Schenk,

2021). This diversification resulted in a spectacular array of

growth forms; however, its classification remains without
Frontiers in Plant Science 02
consensus despite gathering the attention of several studies in

the past (Lems, 1960; Mes and ‘T Hart, 1996; Mort et al., 2007).

Here, we used a simple classification based on the three general

growth forms: ground-branching rosette plants (BR),

monocarpic rosettes (MR) and large shrubs to sub-shrub

species (SS; Figure 1).

We empirically test the hypothesis that growth forms

provide selective advantages to abiotic factors by determining

the climatic and phenotypic dimensions of the Aeonium

radiation in a phylogenetic context. Specifically, we extensively

sampled 37 Canarian endemics to (1) quantify the fraction of

extant climate space occupied by the genus in the Canary

Islands; (2) define the climatic dimensions of growth forms;

(3) determine whether growth form effectively capture

morphological diversity; and (4) test the association of growth

forms and individual traits to climate. This work reveals the

fundamental ecological and evolutionary roles of growth form

diversity in plant adaptive radiations.
Material and methods

Study system and data collection

The Canary Islands is the largest archipelago of

Macaronesia, located in the North Atlantic Ocean (27-29°N,

13-18°W), about 100 km off the coast of the Western Sahara

Desert (Figure 2A). The ages of the seven volcanic islands range

from ca. 1 Mya in the West to ca. 24 Mya in the East (Day et al.,

1997; Hoernle and Carracedo, 2009), representing a cline in

island erosion and concomitantly geomorphological complexity.

Moreover, tradewinds cause intense precipitation and

temperature gradients, both within the steep North-Western

Islands that exhibit extreme differences in elevation and between

humid northern and dry southern sectors, and across the

archipelago. The islands’ immense climatic variation is

typically divided into five major habitat types: sub-tropical

laurel forest, pine forest, thermophile shrubland, xerophytic

scrubland, and alpine (Fernández-Palacios et al., 2008;

Bañares-Baudet, 2015). With an estimated 35 to 45% of plant

endemism among the ~1300 native plant species, along with the

diverse island ages and breath of climatic conditions, the Canary

Islands are considered a classic “evolutionary laboratory”

(Emerson, 2002; Whittaker et al., 2017).

Aeonium (Crassulaceae) is a rosette-forming succulent

genus with several growth forms described (Figure 1) (Lems,

1960; Bañares-Baudet, 2015). It is a monophyletic genus of 44

taxa (34 species and ten subspecies), almost all endemic to the

Canary Islands, except for six phylogenetically deeply nested

species from Morocco, Madeira, Cape Verde, and East Africa

(Liu, 1989). We only considered the Canary Islands

representatives for this study. To collect morphological and

spatial data, we visited all islands with endemic species
frontiersin.org
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between April 2018 and August 2020 (i.e., excluding

Fuerteventura, whose only species, A. balsamiferum, was

sampled in Lanzarote).

Growth forms were quantified using multivariate and

univariate approaches, aiming for five plants from each of

three populations with a large number of healthy mature
Frontiers in Plant Science 03
individuals per taxon (Supplementary Table 1). Accordingly,

we sampled all 37 Canary-island taxa (27 species and all ten

subspecies; varieties were not considered in the sampling;

Figure 1). Considering the rarity of some of these endemisms,

including nine endangered species (Bañares-Baudet, 2015), the

minimum of three populations per taxon was not always
B

C

D
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A

FIGURE 1

Phylogeny and growth form diversity in Aeonium. (A) Adapted phylogeny from Messerschmid et al. (accepted pending revision) to include only
the taxa used in this study; numbers below branches indicate bootstrap values >75. Growth forms are represented by colour code: Shrub and
subshrub (SS) in blue, ground-branching rosettes (BR) in green and monocarpic rosettes (MR) in red. (B) A. lindleyi ssp. lindleyi; (C) A. arboreum
ssp. holochrysum; (D) A. aureum; (E) A. cuneatum; (F) A. nobile; (G) A. urbicum ssp. urbicum.
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achieved (Supplementary Table 1). Two species were excluded

from this study: A. mascaense due to being extinct in the wild

(Bañares-Baudet, 2015) and A. volkerii because only one healthy

individual was found in the field. We followed the most recent

classification for species identification in the field (Bañares-

Baudet, 2015). In each population, we registered the

geolocation at its approximate centroid using a high-sensitivity

Global Positioning System receiver (GPS 72H, Garmin, Taiwan;

positional accuracy ca. 5 m). The univariate data used a classic

scheme of three primary growth forms: shrubs and subshrubs

(SS) for branched taxa with stems, branching rosette (BR) for

stemless branched taxa (branching at or below the surface

through stolons, forming prostrate rosettes), and monocarpic

rosette (MR) for unbranched taxa. These growth forms capture

two essential traits: rosette number (1 in MR and > 1 in others)

and the branching pattern (elongated above-surface stems in SS

and underground in stemless-BR). Though this approach was

simply implemented in the field, in rare situations, individuals

showed different growth forms than expected according to the

species descriptions (e.g., A. diplocyclum showed BR growth

form in one population from La Palma). In this situation, we

classified the growth form of the species overall as described by

Bañares-Baudet (2015) for congruence, as MR revealed to be the

most common growth form for the species in other populations.

The multivariate data captured diversity in plant form more

comprehensively through eleven vegetative traits: rosette

number, plant height, rosette diameter, maximum plant

diameter, minimum plant diameter, leaf length, leaf width,

petiole width, leaf thickness, rosette area and photosynthetic

area (Supplementary Table 2). In total, we sampled 528 plants

from 37 species and subspecies in 99 populations distributed

along 70 locations for morphology (Supplementary Table 1).

To capture the environmental breadth of the radiation, we

recorded additional occurrences of all encountered species in an

environmentally stratified approach. Specifically, for each island,

we determined four climatic quadrants defined by the

intersection of mean annual temperature and annual

precipitation (warm and wet, warm and dry, cold and wet, and

cold and dry). Wemade sure we searched for Aeonium in all four

quadrants on each island, recording localities as above. Using

this approach, we recorded 7730 localities with Aeonium. Note

that possible spatial autocorrelation among observations is not

relevant in the present study, as we do not consider the density of

observations along climatic axes, only their span. For each

locality, we extracted the 19 bioclimatic and the monthly

potential solar radiation rasters (summed to their yearly value)

at a resolution of 30 arcsec from CHELSA V.1.2 (Karger et al.,

2017; Karger et al., 2018) (Supplementary Table 3). Spatial data

handling relied on the package raster (Hijmans, 2021) of the

statistical computing environment R, version 4.1.0 (R Core

Team, 2021).
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Phylogenetic information on relations among taxa was

extracted from the well-resolved RAxML phylogeny of

Messerschmid et al. (accepted pending revision), which was

based on a concatenated supermatrix of loci in the length range

320–500 nucleotides obtained from multi-locus long read

ddRAD sequence data (Hühn et al., 2022). The phylogeny was

then pruned to include only sampled taxa only and made

ultrametric using the ape function chronos (Paradis, 2013)

while scaling the root using the corresponding age estimate of

4.62 Mya (Figure 1A).
Statistical analyses

Statistical analyses were performed using the statistical

computing environment R, software version 4.1.0 (R Core

Team, 2021). To determine the fraction of the total available

climatic niche occupied by Aeonium on the Canary Islands, we

first quantified the climatic space of the Canary Islands by

selecting 10’000 spatially random localities across all islands

(without considering where we sampled) and extracted the

complete set of 20 climatic variables for each. We then

extracted the major axes of variation by principal component

analysis (PCA) and projected all localities to observe Aeonium

distribution into the rotated PC space. For each PC axis, we

computed the fraction of total climatic variation that is spanned

by the sampling localities of the Aeonium species and computed

the mean across axes, weighted by the variance explained by

each axis. This analysis is conservative because it overestimates

total climatic variation, as areas devoid of plant life (e.g.

extremely cold or dry) are included. At the same time, it

underestimates the climatic breadth of the genus, as it only

comprises sampled presences, which is necessarily narrower

than the total climatic breadth of the genus.

To test for phenotype–environment associations for

univariate growth forms, we performed a phylogenetic PCA

rotation of the climatic variables using taxon means that were

scaled and centered (Revell, 2009). Among and within-species

variations were estimated for all traits and climatic variables

(Supplementary Figures 1-31). PC1 and PC2 scores were then

used as input for a phylomorphospace analysis (phytools

package) (Revell, 2012). In these plots, points indicate species’

phenotypes and lines reveal trajectories of evolution (Revell,

2014). Then, we performed the same phylomorphospace

analysis as described above, using the 11 morphological traits

as input for the phylogenetic PCA of morphology. Quantitative

morphological traits were natural log-transformed to allow for

comparing variation across traits measured on different scales

(Lewontin, 1966). If growth forms represent discrete states in the

morphospace, this analysis would reveal how morphological

traits cluster the three growth forms. We tested climatic and
frontiersin.org
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morphological differences among growth forms with analyses of

variance (ANOVA). Finally, we fitted phylogenetic generalized

least squares (PGLS) regressions using the R package caper

(Orme et al., 2018) of PC scores as a function of growth form

for the first two PC axes of climate and morphology to test for

phenotype-environment associations.

To get as close to trait utility in particular environments as

possible, we tested correlations between individual climate and

morphological variables. We used the PC axes of climate and

morphological phylogenetic PCAs that showed statistically

significant correlations and tested these against the three most

explanatory variables of each axis. This allows a better

understanding of what is behind the phenotype–environment

correlations found before. Furthermore, we also performed the

same (PGLS) analysis for each climatic variable against each
Frontiers in Plant Science 05
morphological trait for a comprehensive overview (see

Supplementary Figures 32-42). Significant interactions

demonstrate that the morphological variable is associated

differently with a climatic variable depending on growth form,

which would suggest that the adaptive landscape of a trait

depends on its whole plant context, i.e., what growth form.
Results

Climatic characterization and occupancy

The West and North-west sectors of the Canary Islands have

a significant Atlantic influence, provided by the tradewind

currents (Figure 2A). The first two principal components (PC)
B

A

FIGURE 2

Climate space on the Canary Islands and climatic occupation of Aeonium on the Canary Islands. (A) Map of the Canary Islands colored
according to the annual precipitation gradient; red dots represent Aeonium sampling sites used to calculate the climatic occupation on the
islands; (B) Principal components analysis (PCA) of the climatic range throughout the Canary Islands. Dots colored by the annual precipitation
gradient are random points extracted from the map (A) to represent the overall climatic space; red dots represent the Aeonium spatial sampling
sites extracted from (A). PCA loadings can be found in Supplementary Table 4.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1023595
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


dos Santos et al. 10.3389/fpls.2022.1023595
axes of all climatic variables capture 86.46% of the macroclimatic

space variance (Figure 2B; Supplementary Table 4). The main

drivers of PC1 are temperature ranges (BIO4 and BIO7) and

temperatures of the coldest periods (BIO11 and BIO6). PC2

reflects North-South orientation, as its main drivers are solar

radiation, precipitation seasonality (BIO15), and temperatures

of the wettest and driest quarters (BIO08 and BIO09). Randomly

drawn terrestrial points across the archipelago reveal a triangular

shape (Figure 2B) with corners representing: (1) arid conditions

(< 100 mm of precipitation per year, high PC1 scores), (2) warm

and humid conditions (> 600 mm of precipitation per year, high

PC2 scores), and (3) cold conditions with high thermal ranges,

corresponding to high elevations (low PC1 and low PC2 scores).

Aeonium species have radiated into almost all potentially

available climatic space (88% overall, Figure 2B). The available

climatic space without Aeonium presence is either extremely dry

(e.g., parts of the eastern islands) or alpine (e.g., the Teide

volcano that reaches 3715 m a.s.l.). Both these environments

are naturally very sparsely vegetated, suggesting the limits of the

genus’ realized niche approaches the limits of plant life on the

Canary Islands. In geographic space, the relatively small

northern sectors of western islands with relatively high

precipitation harbor the highest density and species richness of

Aeonium (Figure 2A).
Frontiers in Plant Science 06
Macroclimate of species and
growth forms

To quantify phenotype–environment associations, we first

considered the dominant axes of climatic differentiation among

species and then determined whether an overall association with

growth forms exists. The first two phylogenetic PCA axes of

taxon-mean climatic data well-approximates diversity among

species, as they capture 81.16% of the variation (Figure 3 and

Supplementary Table 5). Species are widely dispersed

throughout climatic space as opposed to forming clusters. PC1

is mostly a precipitation gradient (e.g., BIO19, BIO16, BIO12).

Low PC1 scores represent low precipitation seasonality (BIO15),

associated with high isothermality (BIO03) and relatively high

temperatures, especially during the coldest periods (e.g., BIO06,

BIO11; Figure 3B). On the other hand, PC2 represents a

temperature gradient and solar radiation. High temperatures

correspond to low PC2 values, whereas high solar radiation

represents the positive end of the PC2 axis. As a result, the

negative end of PC1 represents markedly dry environments

occupied by species adapted to very xerophytic environments,

such as A. valverdense, A. lancerottense, A. balsamiferum or A.

hierrense , endemic to the driest islands: Lanzarote,

Fuerteventura and El Hierro (Figures 2A, 3A). High PC1
B

C D

A

FIGURE 3

Phylogenetic principal component analysis of the climatic space of the Canarian Aeonium. (A) Phylogenetic principal component analysis of the
climatic space of Canarian Aeonium. Each dot represents the mean of one taxon (species or subspecies). Lines indicate phylogenetic
relationships among species. Taxa are indicated on each dot by a three-letter acronym (see Supplementary Table 1); (B) Loadings of the climatic
variables of the phylogenetic principal component analysis. Numbers (1-19) indicate BIOs, and srad indicates the annual potential solar radiation
(see Supplementary Table 3); (C) Distribution of growth forms along the first axis of the climatic space (PC1); (D) Distribution of growth forms
along the second axis of the climatic space (PC2). Colors represent growth forms: green – BR (branching rosettes), red – MR (monocarpic
rosettes), blue – SS (Shrubs or subshrubs). PCA loadings in Supplementary Table 5.
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scores and low PC2 scores indicate high precipitation combined

with high temperatures (e.g., BIO05 or BIO10 in PC2), typical of

sub-tropical environments, with species associated with the wet

laurel forest (e.g., A. lindleyi ssp. lindleyi, A. ciliatum, A.

cuneatum and A. tabuliforme; Figures 3A, B). High PC1 scores

combined with high PC2 scores represent high precipitation and

strong temperature seasonality (BIO04), with typical mid-

elevation Canarian pine forest species (A. aureum, A.

spathulatum, A. aizoon, and A. smithii).

Growth forms do not form three discrete clusters; instead,

they are dispersed throughout the climatic space, indicating no

simple overarching structuring effect of growth form on climatic

niche evolution (Figures 3A, C, D). Furthermore, we found no

significant differences in mean PC scores among the three

growth forms (Figures 3C, D; Table 1). Congruently,

relationships among species (illustrated by lines representing

phylogenetic relationships in Figure 3A) indicate that climatic

niche evolution has occurred frequently and in multiple

directions. Moreover, species-pairs with disparate growth

forms may occur in similar climates, e.g., A. aizoon and A.

smithii (BR and SS), A. pseudourbicum and A. dodrantale (MR

and BR), A. ciliatum and A. tabuliforme (SS and MR, both

climatically close to A. cuneatum, a BR species; see Figure 3A).
Morphological profile of growth forms

The growth form classification used in this study is specific

for Aeonium (Lems, 1960) and used the primary growth forms

observed, avoiding sub-categorizations. The classification is

based on the branching pattern: unbranched (MR),

stoloniferous plants that branch at or below the surface (BR)

and stemmed plants that branch above the surface (SS). The

analysis of the phylomorphospace shows that individual
Frontiers in Plant Science 07
morphological traits explain growth form diversity, specifically

the first axis of the PCA, which captures alone 58.54% of the

morphological variation, mainly through a trade-off between

rosette size and number (Figures 4A, B and Supplementary

Table 6). High PC1 scores are explained by high rosette

diameter, rosette area and leaf length; low PC1 scores are

explained by rosette number (Figure 4B; Supplementary

Table 6). Hence, highly branched species (namely SS) form a

cluster towards the negative end of PC1, whereas the opposing

end includes all single-rosetted species (MR). On the other hand,

low PC2 scores capture the size of the plant, specifically by high

photosynthetic area, plant diameter (both maximum and

minimum) and plant height (Figure 4B; Supplementary

Table 6). The negative end of PC2 thus includes the largest

species, mostly large SS (e.g., A. undulatum, A. arboreum, A.

gomerense). In contrast, the positive end includes small-stature

taxa, mostly BR (e.g., A. aizoon, A. dodrantale and A. simsii),

stemless MR (A. tabuliforme and A. diplocyclum) and dwarf SS

(e.g., A. smithii, A. saundersii, A. sedifolium). This result

demonstrates that growth forms represent arrays of

morphological traits with clear delimitations among the three

growth forms regarding the rosette trade-off (Figure 4C). We

found statistically significant differences in PC1 of morphology

according to growth form (p < 0.001; Table 1). Furthermore, we

found significant pairwise differences among all growth forms,

with SS and MR being the most dissimilar (p < 0.001), followed

by SS and BR (p = 0.003), and finally, MR and BR (p = 0.039;

Table 1). Lower statistically significant differences between MR

and BR could be explained by the rosette trade-off: BR species

tend to have the largest rosettes (except dwarf species like A.

aizoon, A. dodrantale or A. simsii), thus producing a much

smaller number of rosettes. The PC2 of morphology, on the

other hand, does not show significant differences (p = 0.082),

including no pairwise differences among growth forms (Table 1).
TABLE 1 Results of ANOVAs and Tukey HSD post-hoc testing for PC1 and PC2 axes of climate and morphology among growth forms.

Variables Df F p-value Growth forms Difference p-value 95% confidence interval

Lower Upper

PC1 Climate 2, 34 1.297 0.287 BR MR -1.350 0.656 -5.108 2.408

BR SS -2.039 0.256 -5.143 1.066

MR SS -0.689 0.861 -3.925 2.546

PC2 Climate 2, 34 0.386 0.683 BR MR -0.565 0.901 -3.745 2.616

BR SS -0.938 0.659 -3.566 1.689

MR SS -0.374 0.940 -3.112 2.364

PC1 Morphology 2, 34 22.41 <0.001 *** BR MR 2.304 0.039 * 0.100 4.508

BR SS -2.692 0.003 ** -4.512 -0.872

MR SS -4.996 < 0.001 *** -6.893 -3.099

PC2 Morphology 2, 34 2.695 0.082 BR MR -0.176 0.979 -2.355 2.004

BR SS -1.480 0.124 -3.280 0.321

MR SS -1.304 0.219 -3.180 0.572
f

Stars indicate significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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Evidence of adaptations to climate

We compared the PC1 and PC2 axes of both climate and

morphology and found statistically significant correlations

between climate (PC2) and individual morphological traits

(PC1) in two growth forms (Figure 5B). As explained above,

the PC2 of climate represents a temperature and solar radiation

gradient with high temperatures on the negative end and high

solar radiation on the positive end. The PC1 of morphological

traits represents the trade-off between rosette number and

rosette size. Though no correlation was found when using all

taxa irrespective of their growth form (no overall correlation

between climate and morphology), we find statistically

significant relations when growth forms are considered in the

model (Table 2). Specifically, we found a positive association for

SS (p = 0.009) and a negative association for BR (p = 0.025;

Figure 5B; Table 2). Contrastingly, MR show a marginally

significant signal (p = 0.056; Table 2) and is the only growth

form to have a statistically significant correlation between PC2 of

climate and PC2 of morphology (p = 0.029; Figure 5D; Table 2).

Further bivariate correlations between the climatic variables

and morphological traits corroborate the pattern observed in

Figure 5B: morphological traits of BR and SS (namely rosette size

and number) exhibit opposite relationships with climate
Frontiers in Plant Science 08
(Supplementary Figures 32-42). In contrast, the interaction of

MR with the climate acts on a different morphological level:

plant size (represented by the PC2 of morphology). This analysis

shows how traits interact differently with the climate according

to their growth form. Peculiarly, rosette number demonstrates

more plasticity towards temperature changes than rosette size

(diameter and area). More specifically, SS have more and smaller

rosettes with high temperatures. On the other hand, BR have

fewer but bigger rosettes in similar environments, demonstrating

opposite phenotype-environment associations (Figure 5B).

More interestingly, MR interact with the same environment on

a different level by the overall plant size with increasing

solar radiation.

The relation between solar radiation and the rosette size-

number trade-off (PC1 morphology) shows, once more,

contrasting behaviors among growth forms. Branching rosettes

showed more but smaller rosettes when occupying

environments with higher solar radiation (mid-elevation

species); in similar contexts, SS showed fewer but bigger

rosettes (Figure 5B, but see also Supplementary Figures 32, 36,

and 41). Similarly to SS, MR evidenced increasing plant size by

increasing plant height and rosette area (Figure 5D but see also

Supplementary Figures 33-42). Even though MR are

characterized by having a single rosette (which could explain
B

C D

A

FIGURE 4

Phylogenetic principal component analysis of the morphological space of the Canarian Aeonium. (A) Phylogenetic principal component analysis
of the morphological space of Canarian Aeonium. Each dot represents the mean of one taxon (species or subspecies). Lines indicate
phylogenetic relationships among species. Taxa are indicated on each dot by a three-letter acronym (see Supplementary Table 1); (B) Loadings
of the morphological traits of the phylogenetic principal component analysis (see Supplementary Table 2 for traits’ abbreviations); (C)
Distribution of growth forms along the first axis of the morphological space (PC1); (D) Distribution of growth forms along the second axis of the
morphological space (PC2). Colors represent growth forms: green – BR (branching rosettes), red – MR (monocarpic rosettes), blue – SS (Shrubs
or subshrubs). PCA loadings in Supplementary Table 6.
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the lack of response since rosette number is the major driving

factor of PC1 of morphology), with increasing solar radiation,

the plants were larger.
Discussion

Species diversification through adaptation to the local

environment is a central premise of adaptive radiations

(Grant, 1981; Schluter, 2000; Losos and Ricklefs, 2009).

Growth forms have long been used to categor ize

morphological divergence in plants and are frequently

recognized as adaptations to environments (Lems, 1960; Nürk

et al., 2019; Schenk, 2021). In this study, we demonstrate that the

intimate relationship that growth forms share with the

environment is not a direct result of adaptation per se.

Instead, the identified climatic dimensions do not affect the

distribution of growth forms. However, growth forms modulate
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the response of specific morphologic traits to the local climate by

developing growth form-specific trait adaptations to similar

climatic conditions. Thus, our results indicate that growth

forms have an indirect rather than direct association with

climate. The phenotypic adaptations to the environment occur

in individual traits and are, in this context, growth form

dependent. We also found that multi-rosetted growth forms

(i.e., BR and SS), showed, without exception, opposing responses

to the environmental conditions. Furthermore, single-rosetted

species (MR) interact with the same climate on a different

morphological axis. Consequently, the response of growth

forms to the environment depends on their intrinsic

morphology and how traits interact with each other.

Aeonium is widely distributed across all islands along a

macroclimate gradient of precipitation, representing the

primary axis of niche divergence among species (Figure 3).

The second dimension of the climatic distribution of Aeonium

is defined by the local climate, as it represents the local climatic
B

C D

A

FIGURE 5

Interactions and PGLS regressions between first and second components of climatic and morphological spaces. (A) PC1 of Climate and PC1 of
Morphology. (B) PC2 of Climate and PC1 of Morphology (BR: Intercept = 1.727, p = 0.025; Slope = -0.380, p = 0.037; SS: Intercept = -1.302,
p < 0.001, Slope = 0.604, p = 0.009). (C) PC1 of Climate and PC2 of Morphology. (D) PC2 of Climate and PC2 of Morphology (MR: Intercept =
1.057, p = 0.404; Slope = -0.735, p = 0.029). Lines represent statistically significant regressions (p < 0.05). Colors indicate different growth
forms: green – BR (branching rosettes), red – MR (monocarpic rosettes), blue – SS (shrubs or subshrubs).
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variation explained essentially by topographic complexity (e.g.,

reflected in solar radiation) (Otto et al., 2016; Testolin et al.,

2021). Our results show that specific morphological traits

interact with the local climate, playing an essential role in trait

adaptation. These findings are consistent with previous studies,

which have shown that local climate is a significant driver of trait

diversification and, thus, of speciation and adaptation

(Jorgensen, 2002; Bruelheide et al., 2018; Testolin et al., 2021).

At the same time, the macroclimate delimitates species’ climatic

preferences and is thus responsible for the overall distribution

pattern of species (Zimmermann et al., 2009; Miguez-Macho

and Fan, 2021).

Morphological diversity is structured in the three growth

forms based on the rosette number and size trade-off (Figure 4).

Rosette size (specifically rosette diameter and rosette area) forms

a strong, negative association with rosette number because

individual shoot apical meristem size trades off with meristem

number through the number of branching events (Whitman and

Aarssen, 2010). These two traits alone segregate most species in

different growth forms (Figure 4). This trade-off is the central

axis of the interaction of traits with the microclimate and

represents the axis of phenotypic adaptation to the

environment. Specifically, we found that in BR, rosette size

increases in environments with high temperatures and low

solar radiation (i.e., north-facing flanks of the islands;

Figure 5B); thus, rosette number decreases.

On the other hand, we found that SS in the same conditions

(high temperatures and low solar radiation) increased rosette

number while reducing rosette size. The biological limitation of

MR species, having by definition one single rosette, implies

minimal variation on the rosette number-size trade-off.

Nevertheless, MR species interact with the microclimate

through a different morphological aspect, i.e., plant size. This
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particular adaptation is in line with their primary ecological

strategy, as monocarpic plants prioritize dispersal and fast

colonization (Mudrák et al., 2021).

Monocarpic species (MR) rely on a lifetime investment

strategy that results in a single “big bang” reproduction event

and subsequent senescence – a remarkably successful strategy

toward populating unstable and highly disturbed environments

given the fast development innate to this growth form

(Jorgensen and Olesen, 2001; Kakishima et al., 2019; Anest

et al., 2021). Furthermore, monocarpic plants are prevalent in

evolutionary radiations in island-like environments, given their

great capacity for rapidly colonizing new territory (particularly

new islands) (Givnish, 2010; Kakishima et al., 2019). On the

other end of the spectrum, multi-rosetted growth forms (BR and

SS) produce a comparatively low number of reproductive units

per season (Lavorel et al., 1997; Mudrák et al., 2021), investing in

establishing populations with higher longevity and thus

associated with low-disturbance environments, where

competitive performance is more important than dispersal

(Mudrák et al., 2021). Adapting to local conditions becomes

essential for settler species in this complex ecological context. On

the other hand, fast colonizer species prioritize the investment in

reproduction and seed dispersal traits, like plant height (Mudrák

et al., 2021). The interactions between plant height and climatic

variables among monocarpic species suggest that specific

population dynamics strategies could intrinsically relate to

distinct ecological strategies (Rudolf and Rasmussen, 2013).

While MR are fast colonizers through massive seed production

and dispersal, BR and SS share a “settler” strategy that prioritizes

growth over reproduction through constant branching while

having contrasting responses to analogous environments. This

clear relation of contrasting trait adaptations inflected by growth

forms could suggest latent ecological strategies (Lavorel et al.,
TABLE 2 Phylogenetic generalized least squares models (PGLS) results of climate and morphology interactions among growth forms.

Response
variables

Predictors Estimate Std.
Error

t-
value

p-
value

Residual std.
error

Multiple
R2

Adjusted
R2

F-statis-
tic

p-value

PC1
Morphology

PC1 Climate x BR 1.086 0.914 1.188 0.244 1.917 0.5889 0.5226 8.88 < 0.001
***PC1 Climate x MR -0.188 0.308 -0.610 0.547

PC1 Climate x SS 0.047 0.234 0.201 0.842

PC2 Climate x BR 1.727 0.732 2.360 0.025* 1.633 0.6809 0.6294 13.23 < 0.001
***PC2 Climate x MR 0.698 0.351 1.986 0.056

PC2 Climate x SS 0.604 0.217 2.781 0.009**

PC2
Morphology

PC1 Climate x BR 0.638 0.888 0.719 0.478 1.786 0.2549 0.1347 2.12 0.089

PC1 Climate x MR 0.210 0.272 0.773 0.445

PC1 Climate x SS -0.081 0.206 -0.393 0.697

PC2 Climate x BR 0.381 0.830 0.459 0.650 1.644 0.3505 0.2457 3.346 0.016*

PC2 Climate x MR -0.735 0.321 -2.292 0.029*

PC2 Climate x SS -0.330 0.208 -1.586 0.123
front
Stars indicate significance level (*, p < 0.05; **, p < 0.01; ***, p < 0.001).
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1997; van der Plas, 2019). Considering plant traits are

adaptations to abiotic factors (Caruso et al., 2020), growth

forms could also play a role in adapting to complex biotic

interactions, namely interspecific competition avoidance. In

this scenario, competition avoidance is attained through

contrastive trait responses to the same environment, a

commonly recognized indication of complementary ecosystem

strategies (Weber et al., 2017; Ronco et al., 2021). While

competition avoidance was not tested in this study, it is an

ecological strategy that allows spatial co-occurrence within

species of the same lineage through divergent resource use,

ultimately triggering diversification (Wilson, 1961; Herrmann

et al., 2021). Although competition avoidance is not a novel idea

in island radiation contexts (Herrmann et al., 2021), it is a largely

understudied topic that could disclose how phylogenetically

close species co-occur without actively competing while

corroborating the known fact that plant radiations certainly

have high growth form diversity.

In summary, growth form divergence has a strikingly

multifaceted, subtle, but critical role in plant radiations. This

study demonstrates that growth forms dictate the direction of

trait adaptations to microclimate rather than being adaptations

per se. The most striking example is the opposite direction of

adaptation for the same traits in different growth forms with

similar ecological strategies (“settler” species, in this case, BR

versus SS). In analogous climatic conditions, these growth forms

respond through opposing directions of the rosette number-size

trade-off. At the same time, MR interacts with the climate

through plant size. The architectural limitations of each

growth form determine trait interactions and trade-offs

responsible for opposing environmental responses (Figure 5).

This unforeseen result indicates that the whole (growth form) is

different from the sum of its parts (traits) and demonstrates that

the response of traits to the local climate (determined by the

growth form) originates novel morphological solutions as

adaptations to similar environmental conditions. Growth form

shifts represent a change of ecological dimension perceived by

the plants. Such shifts open new adaptive landscapes, allowing

not only competition avoidance and sympatric evolution, but

ultimately acting as a diversification trigger.
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