1,003 research outputs found
New Candidate Interstellar Particle in Stardust IS Aerogel Collector: Analysis by STXM and Ptychography
The Stardust Interstellar Preliminary Examination (ISPE) reported in 2014 the discovery of 7 probable contemporary interstellar (IS) particles captured in Stardust IS Collector aerogel and foils. The ISPE reports represented work done over 6 years by more than 60 scientists and >30,000 volunteers, which emphasizes the challenge identifying and analyzing Stardust IS samples was far beyond the primary Stardust cometary collection. We present a new potentially interstellar particle resulting from a continuation of analyses of the IS aerogel collection
Classifying the unknown: discovering novel gravitational-wave detector glitches using similarity learning
The observation of gravitational waves from compact binary coalescences by
LIGO and Virgo has begun a new era in astronomy. A critical challenge in making
detections is determining whether loud transient features in the data are
caused by gravitational waves or by instrumental or environmental sources. The
citizen-science project \emph{Gravity Spy} has been demonstrated as an
efficient infrastructure for classifying known types of noise transients
(glitches) through a combination of data analysis performed by both citizen
volunteers and machine learning. We present the next iteration of this project,
using similarity indices to empower citizen scientists to create large data
sets of unknown transients, which can then be used to facilitate supervised
machine-learning characterization. This new evolution aims to alleviate a
persistent challenge that plagues both citizen-science and instrumental
detector work: the ability to build large samples of relatively rare events.
Using two families of transient noise that appeared unexpectedly during LIGO's
second observing run (O2), we demonstrate the impact that the similarity
indices could have had on finding these new glitch types in the Gravity Spy
program
Elastic Spin Relaxation Processes in Semiconductor Quantum Dots
Electron spin decoherence caused by elastic spin-phonon processes is
investigated comprehensively in a zero-dimensional environment. Specifically, a
theoretical treatment is developed for the processes associated with the
fluctuations in the phonon potential as well as in the electron procession
frequency through the spin-orbit and hyperfine interactions in the
semiconductor quantum dots. The analysis identifies the conditions (magnetic
field, temperature, etc.) in which the elastic spin-phonon processes can
dominate over the inelastic counterparts with the electron spin-flip
transitions. Particularly, the calculation results illustrate the potential
significance of an elastic decoherence mechanism originating from the
intervalley transitions in semiconductor quantum dots with multiple equivalent
energy minima (e.g., the X valleys in SiGe). The role of lattice anharmonicity
and phonon decay in spin relaxation is also examined along with that of the
local effective field fluctuations caused by the stochastic electronic
transitions between the orbital states. Numerical estimations are provided for
typical GaAs and Si-based quantum dots.Comment: 57 pages, 14 figure
Magnetic Impurity in a Metal with Correlated Conduction Electrons: An Infinite Dimensions Approach
We consider the Hubbard model with a magnetic Anderson impurity coupled to a
lattice site. In the case of infinite dimensions, one-particle correlations of
the impurity electron are described by the effective Hamiltonian of the
two-impurity system. One of the impurities interacts with a bath of free
electrons and represents the Hubbard lattice, and the other is coupled to the
first impurity by the bare hybridization interaction. A study of the effective
two-impurity Hamiltonian in the frame of the 1/N expansion and for the case of
a weak conduction-electron interaction (small U) reveals an enhancement of the
usual exponential Kondo scale. However, an intermediate interaction (U/D = 1 -
3), treated by the variational principle, leads to the loss of the exponential
scale. The Kondo temperature T_K of the effective two-impurity system is
calculated as a function of the hybridization parameter and it is shown that
T_K decreases with an increase of U. The non-Fermi-liquid character of the
Kondo effect in the intermediate regime at the half filling is discussed.Comment: 12 pages with 8 PS figures, RevTe
Kondo Effect in a Metal with Correlated Conduction Electrons: Diagrammatic Approach
We study the low-temperature behavior of a magnetic impurity which is weakly
coupled to correlated conduction electrons. To account for conduction electron
interactions a diagrammatic approach in the frame of the 1/N expansion is
developed. The method allows us to study various consequences of the conduction
electron correlations for the ground state and the low-energy excitations. We
analyse the characteristic energy scale in the limit of weak conduction
electron interactions. Results are reported for static properties (impurity
valence, charge susceptibility, magnetic susceptibility, and specific heat) in
the low-temperature limit.Comment: 16 pages, 9 figure
Reading aloud boosts connectivity through the putamen
Functional neuroimaging and lesion studies have frequently reported thalamic and putamen activation during reading and speech production. However, it is currently unknown how activity in these structures interacts with that in other reading and speech production areas. This study investigates how reading aloud modulates the neuronal interactions between visual recognition and articulatory areas, when both the putamen and thalamus are explicitly included. Using dynamic causal modeling in skilled readers who were reading regularly spelled English words, we compared 27 possible pathways that might connect the ventral anterior occipito-temporal sulcus (aOT) to articulatory areas in the precentral cortex (PrC). We focused on whether the neuronal interactions within these pathways were increased by reading relative to picture naming and other visual and articulatory control conditions. The results provide strong evidence that reading boosts the aOT–PrC pathway via the putamen but not the thalamus. However, the putamen pathway was not exclusive because there was also evidence for another reading pathway that did not involve either the putamen or the thalamus. We conclude that the putamen plays a special role in reading but this is likely to vary with individual reading preferences and strategies
Stress Priming in Reading and the Selective Modulation of Lexical and Sub-Lexical Pathways
Four experiments employed a priming methodology to investigate different mechanisms of stress assignment and how they are modulated by lexical and sub-lexical mechanisms in reading aloud in Italian. Lexical stress is unpredictable in Italian, and requires lexical look-up. The most frequent stress pattern (Dominant) is on the penultimate syllable [laVOro (work)], while stress on the antepenultimate syllable [MAcchina (car)] is relatively less frequent (non-Dominant). Word and pseudoword naming responses primed by words with non-dominant stress – which require whole-word knowledge to be read correctly – were compared to those primed by nonwords. Percentage of errors to words and percentage of dominant stress responses to nonwords were measured. In Experiments 1 and 2 stress errors increased for non-dominant stress words primed by nonwords, as compared to when they were primed by words. The results could be attributed to greater activation of sub-lexical codes, and an associated tendency to assign the dominant stress pattern by default in the nonword prime condition. Alternatively, they may have been the consequence of prosodic priming, inducing more errors on trials in which the stress pattern of primes and targets was not congruent. The two interpretations were investigated in Experiments 3 and 4. The results overall suggested a limited role of the default metrical pattern in word pronunciation, and showed clear effect of prosodic priming, but only when the sub-lexical mechanism prevailed
A switchable controlled-NOT gate in a spin-chain NMR quantum computer
A method of switching a controlled-NOT gate in a solid-stae NMR quantum
computer is presented. Qubits of I=1/2 nuclear spins are placed periodically
along a quantum spin chain (1-D antiferromagnet) having a singlet ground state
with a finite spin gap to the lowest excited state caused by some quantum
effect. Irradiation of a microwave tuned to the spin gap energy excites a
packet of triplet magnons at a specific part of the chain where control and
target qubits are involved. The packet switches on the Suhl-Nakamura
interaction between the qubits, which serves as a controlled NOT gate. The
qubit initialization is achieved by a qubit initializer consisting of
semiconducting sheets attached to the spin chain, where spin polarizations
created by the optical pumping method in the semiconductors are transferred to
the spin chain. The scheme allows us to separate the initialization process
from the computation, so that one can optimize the computation part without
being restricted by the initialization scheme, which provides us with a wide
selection of materials for a quantum computer.Comment: 8 pages, 5 figure
- …