349 research outputs found
Detectability of dirty dust grains in brown dwarf atmospheres
Dust clouds influence the atmospheric structure of brown dwarfs, and they
affect the heat transfer and change the gas-phase chemistry. However, the
physics of their formation and evolution is not well understood. In this
letter, we predict dust signatures and propose a potential observational test
of the physics of dust formation in brown dwarf atmosphere based on the
spectral features of the different solid components predicted by dust formation
theory. A momentum method for the formation of dirty dust grains (nucleation,
growth, evaporation, drift) is used in application to a static brown dwarf
atmosphere structure to compute the dust grain properties, in particular the
heterogeneous grain composition and the grain size. Effective medium and Mie
theory are used to compute the extinction of these spherical grains. Dust
formation results in grains whose composition differs from that of grains
formed at equilibrium. Our kinetic model predicts that solid amorphous SiO2[s]
(silica) is one of the most abundant solid component followed by amorphous
MgSiO4[s] and MgSiO3[s], while SiO2[s] is absent in equilibrium models
because it is a metastable solid. Solid amorphous SiO2[s] possesses a strong
broad absorption feature centered at 8.7mum, while amorphous
Mg2SiO4[s]/MgSiO3[s] absorb at 9.7mum beside other absorption features at
longer wavelength. Those features at lambda < 15mum are detectable in
absorption if grains are small (radius < 0.2mum) in the upper atmosphere as
suggested by our model. We suggest that the detection of a feature at 8.7mum in
deep infrared spectra could provide evidence for non-equilibrium dust formation
that yields grains composed of metastable solids in brown dwarf atmospheres.
This feature will shift towards 10mum and broaden if silicates (e.g. fosterite)
are much more abundant.Comment: A&A Letter, accepte
Magnetic Flares on Asymptotic Giant Branch Stars
We investigate the consequences of magnetic flares on the surface of
asymptotic giant branch (AGB) and similar stars. In contrast to the solar wind,
in the winds of AGB stars the gas cooling time is much shorter than the outflow
time. As a result, we predict that energetic flaring will not inhibit, and may
even enhance, dust formation around AGB stars. If magnetic flares do occur
around such stars, we expect some AGB stars to exhibit X-ray emission; indeed
certain systems including AGB stars, such as Mira, have been detected in
X-rays. However, in these cases, it is difficult to distinguish between
potential AGB star X-ray emission and, e.g., X-ray emission from the vicinity
of a binary companion. Analysis of an archival ROSAT X-ray spectrum of the Mira
system suggests an intrinsic X-ray luminosity 2x10^{29} erg/sec and temperature
10^7 K. These modeling results suggest that magnetic activity, either on the
AGB star (Mira A) or on its nearby companion (Mira B), is the source of the
X-rays, but do not rule out the possibility that the X-rays are generated by an
accretion disk around Mira B.Comment: ApJ, Accepted; revised version of astro-ph/020923
FUV and X-ray irradiated protoplanetary disks: a grid of models I. The disk structure
Context. Planets are thought to eventually form from the mostly gaseous (~99%
of the mass) disks around young stars. The density structure and chemical
composition of protoplanetary disks are affected by the incident radiation
field at optical, FUV, and X-ray wavelengths, as well as by the dust
properties.
Aims. The effect of FUV and X-rays on the disk structure and the gas chemical
composition are investigated. This work forms the basis of a second paper,
which discusses the impact on diagnostic lines of, e.g., C+, O, H2O, and Ne+
observed with facilities such as Spitzer and Herschel.
Methods. A grid of 240 models is computed in which the X-ray and FUV
luminosity, minimum grain size, dust size distribution, and surface density
distribution are varied in a systematic way. The hydrostatic structure and the
thermo-chemical structure are calculated using ProDiMo.
Results. The abundance structure of neutral oxygen is stable to changes in
the X-ray and FUV luminosity, and the emission lines will thus be useful
tracers of the disk mass and temperature. The C+ abundance distribution is
sensitive to both X-rays and FUV. The radial column density profile shows two
peaks, one at the inner rim and a second one at a radius r=5-10 AU. Ne+ and
other heavy elements have a very strong response to X-rays, and the column
density in the inner disk increases by two orders of magnitude from the lowest
(LX = 1e29 erg/s) to the highest considered X-ray flux (LX = 1e32 erg/s). FUV
confines the Ne+ ionized region to areas closer to the star at low X-ray
luminosities (LX = 1e29 erg/s). H2O abundances are enhanced by X-rays due to
higher temperatures in the inner disk and higher ionization fractions in the
outer disk. The line fluxes and profiles are affected by the effects on these
species, thus providing diagnostic value in the study of FUV and X-ray
irradiated disks around T Tauri stars. (abridged)Comment: 47 pages, accepted by Astronomy and Astrophysics, a high resolution
version of the paper is located at
http://www.astro.rug.nl/~meijerink/disk_paperI_xrays.pd
The effects of dust evolution on disks in the mid-IR
In this paper, we couple together the dust evolution code two-pop-py with the
thermochemical disk modelling code ProDiMo. We create a series of
thermochemical disk models that simulate the evolution of dust over time from
0.018 Myr to 10 Myr, including the radial drift, growth, and settling of dust
grains. We examine the effects of this dust evolution on the mid-infrared gas
emission, focussing on the mid-infrared spectral lines of C2H2, CO2, HCN, NH3,
OH, and H2O that are readily observable with Spitzer and the upcoming E-ELT and
JWST.
The addition of dust evolution acts to increase line fluxes by reducing the
population of small dust grains. We find that the spectral lines of all species
except C2H2 respond strongly to dust evolution, with line fluxes increasing by
more than an order of magnitude across the model series as the density of small
dust grains decreases over time. The C2H2 line fluxes are extremely low due to
a lack of abundance in the infrared line-emitting regions, despite C2H2 being
commonly detected with Spitzer, suggesting that warm chemistry in the inner
disk may need further investigation. Finally, we find that the CO2 flux
densities increase more rapidly than the other species as the dust disk
evolves. This suggests that the flux ratios of CO2 to other species may be
lower in disks with less-evolved dust populations.Comment: 13 pages, 9 figures, accepted in A&
Comparison of cloud models for Brown Dwarfs
A test case comparison is presented for different dust cloud model approaches
applied in brown dwarfs and giant gas planets. We aim to achieve more
transparency in evaluating the uncertainty inherent to theoretical modelling.
We show in how far model results for characteristic dust quantities vary due to
different assumptions. We also demonstrate differences in the spectral energy
distributions resulting from our individual cloud modelling in 1D substellar
atmosphere simulationsComment: 5 pages, Proceeding to "Exoplantes: Detection, Formation, Dynamics",
eds. Ferraz-Mello et
The Binarity of Eta Carinae and its Similarity to Related Astrophysical Objects
I examine some aspects of the interaction between the massive star Eta
Carinae and its companion, in particular during the eclipse-like event, known
as the spectroscopic event or the shell event. The spectroscopic event is
thought to occur when near periastron passages the stellar companion induces
much higher mass loss rate from the primary star, and/or enters into a much
denser environment around the primary star. I find that enhanced mass loss rate
during periastron passages, if it occurs, might explain the high eccentricity
of the system. However, there is not yet a good model to explain the presumed
enhanced mass loss rate during periastron passages. In the region where the
winds from the two stars collide, a dense slow flow is formed, such that large
dust grains may be formed. Unlike the case during the 19th century Great
Eruption, the companion does not accrete mass during most of its orbital
motion. However, near periastron passages short accretion episodes may occur,
which may lead to pulsed ejection of two jets by the companion. The companion
may ionize a non-negligible region in its surrounding, resembling the situation
in symbiotic systems. I discuss the relation of some of these processes to
other astrophysical objects, by that incorporating Eta Car to a large class of
astrophysical bipolar nebulae.Comment: Updated version. ApJ, in pres
[OI] disk emission in the Taurus star forming region
The structure of protoplanetary disks is thought to be linked to the
temperature and chemistry of their dust and gas. Whether the disk is flat or
flaring depends on the amount of radiation that it absorbs at a given radius,
and on the efficiency with which this is converted into thermal energy. The
understanding of these heating and cooling processes is crucial to provide a
reliable disk structure for the interpretation of dust continuum emission and
gas line fluxes. Especially in the upper layers of the disk, where gas and dust
are thermally decoupled, the infrared line emission is strictly related to the
gas heating/cooling processes. We aim to study the thermal properties of the
disk in the oxygen line emission region, and to investigate the relative
importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070
Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes
observed in a sample of protoplanetary disks of the Taurus/Auriga star forming
region and compare it to the model predictions presented in our previous work.
The data were obtained with the PACS instrument on board the Herschel Space
Observatory as part of the Herschel Open Time Key Program GASPS (GAS in
Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid
of disk models can reproduce the [OI] absolute fluxes and predict a correlation
between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI]
line flux and the X-ray luminosity, the FUV luminosity or their sum. The data
show that the FUV or X-ray radiation has no notable impact on the region where
the [OI] line is formed. This is in contrast with what is predicted from our
models. Possible explanations are that the disks in Taurus are less flaring
than the hydrostatic models predict, and/or that other disk structure aspects
that were left unchanged in our models are important. ..abridged..Comment: 9 pages, accepted for publication in A&
CO ro-vibrational lines in HD100546: A search for disc asymmetries and the role of fluorescence
We have studied the emission of CO ro-vibrational lines in the disc around
the Herbig Be star HD100546 with the final goal of using these lines as a
diagnostic to understand inner disc structure in the context of planet
formation. High-resolution IR spectra of CO ro-vibrational emission at eight
different position angles were taken with CRIRES at the VLT. From these spectra
flux tables, CO ro-vibrational line profiles, and population diagrams were
produced. We have investigated variations in the line profile shapes and line
strengths as a function of slit position angle. We used the thermochemical disc
modelling code ProDiMo based on the chemistry, radiation field, and temperature
structure of a previously published model for HD100546. Comparing observations
and the model, we investigated the possibility of disc asymmetries, the
excitation mechanism (UV fluorescence), the geometry, and physical conditions
of the inner disc. The observed CO ro-vibrational lines are largely emitted
from the inner rim of the outer disc at 10-13 AU. The line shapes are similar
for all v levels and line fluxes from all vibrational levels vary only within
one order of magnitude. All line profile asymmetries and variations can be
explained with a symmetric disc model to which a slit correction and pointing
offset is applied. Because the angular size of the CO emitting region (10-13
AU) and the slit width are comparable the line profiles are very sensitive to
the placing of the slit. The model reproduces the line shapes and the fluxes of
the v=1-0 lines as well as the spatial extent of the CO ro-vibrational
emission. It does not reproduce the observed band ratios of 0.5-0.2 with higher
vibrational bands. We find that lower gas volume densities at the surface of
the inner rim of the outer disc can make the fluorescence pumping more effcient
and reproduce the observed band ratios.Comment: 20 pages, 21 figure
Uncertainties in water chemistry in disks: An application to TW Hya
Context. This paper discusses the sensitivity of water lines to chemical
processes and radiative transfer for the protoplanetary disk around TW Hya. The
study focuses on the Herschel spectral range in the context of new line
detections with the PACS instrument from the Gas in Protoplanetary Systems
project (GASPS). Aims. The paper presents an overview of the chemistry in the
main water reservoirs in the disk around TW Hya. It discusses the limitations
in the interpretation of observed water line fluxes. Methods. ... (abbreviated)
Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and
CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows
that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines
are very robust to uncertainties in the chemistry, while the water line fluxes
can change by factors of a few. The water lines are optically thick,
sub-thermally excited and can couple to the background continuum radiation
field. The low-excitation water lines are also sensitive to uncertainties in
the collision rates, e.g. with neutral hydrogen. The gas temperature plays an
important role for the [OI] fine structure line fluxes, the water line fluxes
originating from the inner disk as well as the high excitation CO, CH+ and OH
lines. Conclusions. Due to their sensitivity on chemical input data and
radiative transfer, water lines have to be used cautiously for understanding
details of the disk structure. Water lines covering a wide range of excitation
energies provide access to the various gas phase water reservoirs (inside and
outside the snow line) in protoplanetary disks and thus provide important
information on where gas-phase water is potentially located. Experimental
and/or theoretical collision rates for H2O with atomic hydrogen are needed to
diminish uncertainties from water line radiative transfer.Comment: accepted for publication in A&
The Influence of Dust Formation Modelling on Na I and K I Line Profiles in Substellar Atmospheres
We aim to understand the correlation between cloud formation and alkali line
formation in substellar atmospheres.We perform line profile calculations for Na
I and K I based on the coupling of our kinetic model for the formation and
composition of dust grains with 1D radiative transfer calculations in
atmosphere models for brown dwarfs and giant gas planets. The Na I and K I line
profiles sensibly depend on the way clouds are treated in substellar atmosphere
simulations. The kinetic dust formation model results in the highest
pseudo-continuum compared to the limiting cases.Comment: 5 pages, Accepted for publication in MNRA
- …