87 research outputs found

    Design Rules for Laser‐Treated Icephobic Metallic Surfaces for Aeronautic Applications

    Get PDF
    Ice accretion on external aircraft surfaces due to the impact of supercooled water droplets can negatively affect the aerodynamic performance and reduce the operational capability and, therefore, must be prevented. Icephobic coatings capable of reducing the adhesion strength of ice to a surface represent a promising technology to support thermal or mechanical ice protection systems. Icephobicity is similar to hydrophobicity in several aspects and superhydrophobic surfaces embody a straightforward solution to the ice adhesion problem. Short/ultrashort pulsed laser surface treatments are proposed as a viable technology to generate superhydrophobic properties on metallic surfaces. However, it has not yet been verified whether such surfaces are generally icephobic under representative icing conditions. This study investigates the ice adhesion strength on Ti6Al4V, an alloy commonly used for aerospace components, textured by means of direct laser writing, direct laser interference patterning, and laser-induced periodic surface structures laser sources with pulse durations ranging from nano- to femtosecond regimes. A clear relation between the spatial period, the surface microstructure depth, and the ice adhesion strength under different icing conditions is investigated. From these observations, a set of design rules can be defined for superhydrophobic surfaces that are icephobic, too

    Using Red List Indices to monitor extinction risk at national scales

    Get PDF
    The Red List Index (RLI) measures change in the aggregate extinction risk of species. It is a key indicator for tracking progress toward nine of the Aichi and many proposed post-2020 Global Biodiversity Framework Targets. Here, we consider two formulations of the RLI used for reporting biodiversity trends at national scales. Disaggregated global RLIs measure changing national contributions to global extinction risk and are currently based on five taxonomic groups, while national RLIs measure changing national extinction risk and are based on taxonomic groups assessed multiple times in country. For 74% of nations, the disaggregated global RLI is currently based on three or fewer taxonomic groups. Meanwhile, national RLIs from selected pilot countries Finland, South Africa, and Brazil are computed from twelve, eight, and nine taxonomic groups, respectively. The national RLI and the disaggregated global RLI measure different aspects of biodiversity, in that the former detects national trends in populations of species for which each country is responsible while the latter provides standardized comparisons of nations' contributions to the global extinction risk of the same species groups. As governments commit to the post-2020 Global Biodiversity Framework, we encourage them to monitor a standard set of taxonomic groups representing different biomes using both RLI formulations to ensure effective target tracking and accurate feedback on their conservation investments.Peer reviewe

    Auditory spatial representations of the world are compressed in blind humans

    Get PDF
    Compared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls. Blind participants overestimated the distance to nearby sources, and underestimated the distance to remote sound sources, in both reverberant and anechoic environments, and for speech, music and noise signals. Functions relating judged and actual virtual distance were well fitted by compressive power functions, indicating that the absence of visual information regarding the distance of sound sources may prevent accurate calibration of the distance information provided by auditory signals

    Biomechanics and anterior cruciate ligament reconstruction

    Get PDF
    For years, bioengineers and orthopaedic surgeons have applied the principles of mechanics to gain valuable information about the complex function of the anterior cruciate ligament (ACL). The results of these investigations have provided scientific data for surgeons to improve methods of ACL reconstruction and postoperative rehabilitation. This review paper will present specific examples of how the field of biomechanics has impacted the evolution of ACL research. The anatomy and biomechanics of the ACL as well as the discovery of new tools in ACL-related biomechanical study are first introduced. Some important factors affecting the surgical outcome of ACL reconstruction, including graft selection, tunnel placement, initial graft tension, graft fixation, graft tunnel motion and healing, are then discussed. The scientific basis for the new surgical procedure, i.e., anatomic double bundle ACL reconstruction, designed to regain rotatory stability of the knee, is presented. To conclude, the future role of biomechanics in gaining valuable in-vivo data that can further advance the understanding of the ACL and ACL graft function in order to improve the patient outcome following ACL reconstruction is suggested

    Peripersonal space representation develops independently from visual experience

    Get PDF
    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation

    Reduction of serum IGF-I levels in patients affected with Monoclonal Gammopathies of undetermined significance or Multiple Myeloma. Comparison with bFGF, VEGF and K-ras gene mutation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Serum levels of IGF-I in patients affected with multiple myeloma (MM) have been scarcely studied. The present study is aimed to explore this point comparing 55 healthy subjects, 71 monoclonal gammopaties of uncertain significance (MGUS) and 77 overt MM patients. In the same subjects, basic FGF and VEGF, have been detected. All three mediators were analyzed in function of K-<it>ras </it>mutation and melphalan response. Concerning IGF-I, two representative monitoring examples have also been added.</p> <p>Methods</p> <p>Cytokine determinations were performed by commercially available ELISA kits, while K12-<it>ras </it>mutation was investigated on genomic DNA isolated from bone marrow cell specimens by RFLP-PCR assay.</p> <p>Results</p> <p>Significant reductions of IGF-I levels were observed in MGUS and MM as compared with healthy controls. In addition, MM subjects showed significantly decreased serum IGF-I levels than MGUS. Conversely, increasing levels were observed for bFGF and VEGF, molecules significantly correlated. A multivariate analysis corrected for age and gender confirmed the significant difference only for IGF-I values (P = 0.01). K12-<it>ras </it>mutation was significantly associated with malignancy, response to therapy and with significantly increased serum bFGF levels.</p> <p>Conclusion</p> <p>IGF-I reduction in the transition: Controls→MGUS→MM and changes observed over time suggest that IGF-I should be furtherly studied in future clinical trials as a possible monitoring marker for MM.</p

    Alpha shapes: Determining 3D shape complexity across morphologically diverse structures

    Get PDF
    Background. Following recent advances in bioimaging, high-resolution 3D models of biological structures are now generated rapidly and at low-cost. To utilise this data to address evolutionary and ecological questions, an array of tools has been developed to conduct 3D shape analysis and quantify topographic complexity. Here we focus particularly on shape techniques applied to irregular-shaped objects lacking clear homologous landmarks, and propose the new ‘alpha-shapes’ method for quantifying 3D shape complexity. Methods. We apply alpha-shapes to quantify shape complexity in the mammalian baculum as an example of a morphologically disparate structure. Micro- computed-tomography (ÎŒCT) scans of bacula were conducted. Bacula were binarised and converted into point clouds. Following application of a scaling factor to account for absolute differences in size, a suite of alpha-shapes was fitted to each specimen. An alpha shape is a formed from a subcomplex of the Delaunay triangulation of a given set of points, and ranges in refinement from a very coarse mesh (approximating convex hulls) to a very fine fit. ‘Optimal’ alpha was defined as the degree of refinement necessary in order for alpha-shape volume to equal CT voxel volume, and was taken as a metric of overall shape ‘complexity’. Results Our results show that alpha-shapes can be used to quantify interspecific variation in shape ‘complexity’ within biological structures of disparate geometry. The ‘stepped’ nature of alpha curves is informative with regards to the contribution of specific morphological features to overall shape ‘complexity’. Alpha-shapes agrees with other measures of topographic complexity (dissection index, Dirichlet normal energy) in identifying ursid bacula as having low shape complexity. However, alpha-shapes estimates mustelid bacula as possessing the highest topographic complexity, contrasting with other shape metrics. 3D fractal dimension is found to be an inappropriate metric of complexity when applied to bacula. Conclusions. The alpha-shapes methodology can be used to calculate ‘optimal’ alpha refinement as a proxy for shape ‘complexity’ without identifying landmarks. The implementation of alpha-shapes is straightforward, and is automated to process large datasets quickly. Beyond genital shape, we consider the alpha-shapes technique to hold considerable promise for new applications across evolutionary, ecological and palaeoecological disciplines
    • 

    corecore