10 research outputs found

    Prognosis in patients with myocardial infarction with ST-elevation depending on the timing of interventional revascularization

    Get PDF
    Проверена е прогнозата (болничния и следболничния леталитет до края на 6-ия месец) при 300 болни (212 мъже и 88 жени) с първи миокарден инфаркт със ST- елевация (STEMI) на средна възраст 62.9 год. в зависимост от срока на извършената първична коронарна интервенция (PCI) след началото на симптомите. В зависимост от срока на извършената РСІ болните са разделени на 4 групи: до 3-ия, до 6-ия, до 12-ия и до 24-ия час след началото на инфаркта. Болничният леталитет за всички болни е 6.3%, a до края на 6-ия месец - 13.3%, еднакъв при І-ва и ІІ-ра група и достоверно по-малък, отколкото при ІІІ-та и ІV-та група, по-голям при жените, при болните над 65 г., с ФИ <35.0% и с тромботична оклузия на LM и LAD.The prognosis (in-hospital and post-hospitalization lethality by the end of the 6th moth) of 300 patients (212 men and 88 women) with a first myocardial infarction with ST-elevation (STEMI) at an average age of 62.9 years was studied depending on the timing of the conducted primary coronary intervention (PCI) after the onset of symptoms. Depending on the timing of the conducted PCI, the patients were divided into 4 groups: by the 3rd, 6th, 12th, and 24th hour after the onset of the infarction. The patients` in-hospital lethality was 6.3%, and that by the end of the 6th month - 13.3%. It was the same for groups I and II and significantly lower than in groups III and IV; higher in women, in patients over 65 years of age, with ejection fraction (EF) <35.0% and with thrombotic occlusion of LM and LAD

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future

    Ecological barriers mediate spatiotemporal shifts of bird communities at a continental scale

    Get PDF
    This study was supported by the Swiss National Science Foundation (grant P2BEP3_195232) and by the Academy of Finland (project 323527 and project 329251).Species' range shifts and local extinctions caused by climate change lead to community composition changes. At large spatial scales, ecological barriers, such as biome boundaries, coastlines, and elevation, can influence a community's ability to shift in response to climate change. Yet, ecological barriers are rarely considered in climate change studies, potentially hindering predictions of biodiversity shifts. We used data from two consecutive European breeding bird atlases to calculate the geographic distance and direction between communities in the 1980s and their compositional best match in the 2010s and modeled their response to barriers. The ecological barriers affected both the distance and direction of bird community composition shifts, with coastlines and elevation having the strongest influence. Our results underscore the relevance of combining ecological barriers and community shift projections for identifying the forces hindering community adjustments under global change. Notably, due to (macro)ecological barriers, communities are not able to track their climatic niches, which may lead to drastic changes, and potential losses, in community compositions in the future.Publisher PDFPeer reviewe

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Publisher Copyright: © 2022 The Author(s). Published by IOP Publishing Ltd.Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr-1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr-1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future.Peer reviewe

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    Get PDF
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s-2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr(-1) towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr(-1). Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future

    Using important plant areas and important bird areas to identify Key Biodiversity Areas in the Republic of Macedonia

    No full text
    An attempt is made to identify Key Biodiversity Areas in the Republic of Macedonia through the identification of internationally recognized important areas for biodiversity: Important Plant Areas (IPAs) and Important Bird Areas (IBAs). Forty two IPAs covering 6,495km2 and 24 IBAs covering 6,907km2 have been identified in Macedonia. Thirty seven IPAs (6,152km2 or 24% of the country’s territory) and 15 IBAs (4,821km2 or 18.75% of the national territory), meet KBA criteria, between them yielding 42 KBAs. The remaining five IPAs and nine IBAs do not meet KBA criteria although have international significance. Together IPAs and IBAs total 10,698km2; those meeting the KBA criteria total 9,670km2. In total, 73% and 65% of the entire national protected areas (PAs) surface overlaps with IPAs and IBAs respectively. This proportion is 81% for the 42 KBAs. However, only 25% of the total size of protected areas overlaps with IPAs, only 21% overlap with IBAs, and only 19% with the combined 42 KBAs. This means that Macedonia’s protected areas system is not yet representative and comprehensive for safeguarding its botanical and avian diversity

    The future distribution of wetland birds breeding in Europe validated against observed changes in distribution

    No full text
    Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr−1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr−1. Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to 'climate debt'. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds' resilience to the expected environmental changes in the future

    Local colonisations and extinctions of European birds are poorly explained by changes in climate suitability

    Get PDF
    Abstract Climate change has been associated with both latitudinal and elevational shifts in species’ ranges. The extent, however, to which climate change has driven recent range shifts alongside other putative drivers remains uncertain. Here, we use the changing distributions of 378 European breeding bird species over 30 years to explore the putative drivers of recent range dynamics, considering the effects of climate, land cover, other environmental variables, and species’ traits on the probability of local colonisation and extinction. On average, species shifted their ranges by 2.4 km/year. These shifts, however, were significantly different from expectations due to changing climate and land cover. We found that local colonisation and extinction events were influenced primarily by initial climate conditions and by species’ range traits. By contrast, changes in climate suitability over the period were less important. This highlights the limitations of using only climate and land cover when projecting future changes in species’ ranges and emphasises the need for integrative, multi-predictor approaches for more robust forecasting
    corecore