42 research outputs found

    Constraints on the applicability of the organic temperature proxies UK'37, TEX86 and LDI in the subpolar region around Iceland

    Get PDF
    The Supplement related to this article is available online at doi:10.5194/bg-12-6573-2015-supplement.Subpolar regions are key areas for studying natural climate variability due to their high sensitivity to rapid environmental changes, particularly through sea surface temperature (SST) variations. Here, we have tested three independent organic temperature proxies (UK'37; TEX86; and the long-chain diol index, LDI) regarding their potential applicability for SST reconstruction in the subpolar region around Iceland. UK'37, TEX86 and TEXL86 temperature estimates from suspended particulate matter showed a substantial discrepancy with instrumental data, while long-chain alkyl diols were below the detection limit at most of the stations. In the northern Iceland Basin, sedimenting particles revealed a seasonality in lipid fluxes, i.e., high fluxes of alkenones and glycerol dialkyl glycerol tetraethers (GDGTs) were measured during late spring and during summer and high fluxes of long-chain alkyl diols during late summer. The flux-weighted average temperature estimates had a significant negative (ca. 2.3 °C for UK'37) and positive (up to 5 °C for TEX86) offset with satellite-derived SSTs and temperature estimates derived from the underlying surface sediment. UK'37 temperature estimates from surface sediments around Iceland correlate well with summer mean sea surface temperatures, while TEX86-derived temperatures correspond with both annual and winter mean 0–200 m temperatures, suggesting a subsurface temperature signal. Anomalous LDI-SST values in surface sediments and low mass flux of 1,13- and 1,15-diols compared to 1,14-diols suggest that Proboscia diatoms are the major sources of long-chain alkyl diols in this area rather than eustigmatophyte algae, and therefore the LDI cannot be applied in this region.This work was supported by the Earth and Life Sciences Division of the Netherlands Organization for Scientific Research (NWO-ALW) by a grant (ALW 820.01.013) to J. S. Sinninghe Damsté. The research leading to these results has received funding from the European Research Council (ERC) under the European Union’s Seventh Framework Program (FP7/2007-2013) ERC grant agreement 226600

    Sea surface temperature variations in the western Mediterranean Sea over the last 20 kyr: A dual-organic proxy (U<super>K'</super><sub>37</sub> and LDI) approach

    Get PDF
    A high-resolution sea surface temperature (SST) reconstruction of the western Mediterranean was accomplished using two independent, algae-based molecular organic proxies, i.e., the U-37(K) index based on long-chain unsaturated ketones and the novel long-chain diol index (LDI) based on the relative abundances of C-28 and C-30 1,13- and 1,15-diols. Two marine records, from the western and eastern Alboran Sea basin, spanning the last 14 and 20kyr, respectively, were studied. Results from the surface sediments suggest that the two proxies presently reflect seasons with similar SST or simply annual mean SST. Both proxy records reveal the transition from the Last Glacial Maximum to the Holocene in the eastern Alboran Sea with an SST increase of approximately 7 degrees C for U-37(K) and 9 degrees C for LDI. Minimum SSTs (10-12 degrees C) are reached at the end of the Last Glacial Maximum and during the last Heinrich event with a subsequent rapid SST increase in LDI-SST toward the beginning of the Bolling period (20 degrees C), while U-37(K)-SST remains constantly low (similar to 12 degrees C). The Bolling-Allerod period is characterized by a rapid increase and subsequent decrease in U-37(K)-SST, while the LDI-SST decrease continuously. Short-term fluctuations in U-37(K)-SST are probably related to the availability of nutrients and seasonal changes. The Younger Dryas is recorded as a short cold interval followed by progressively warmer temperatures. During the Holocene, the general lower U-37(K)-derived temperature values in the eastern Alboran (by approximately 1.5-2 degrees C) suggest a southeastward cold water migration by the western Alboran gyre and divergence in the haptophyte blooming season between both basins.<br>Key Points<br><list list-type="bulleted" id="palo20073-list-0001"> <list-item id="palo20073-li-0001">High-resolution SST reconstruction is performed in the westernmost Mediterranean <list-item id="palo20073-li-0002">Two algae-based proxies show the temperature evolution for the last 20 kyr <list-item id="palo20073-li-0003">Derived SSTs suggest different growth seasons of alkenone and diol producer

    Paleoclimate reconstruction of the last 36 kyr based on branched glycerol dialkyl glycerol tetraethers in the Padul palaeolake record (Sierra Nevada, southern Iberian Peninsula)

    Get PDF
    Quantitative continental climate reconstructions covering the last glacial cycle from the Iberian Peninsula are scarce. In order to fill this gap, we obtained for the first time a high-resolution mean annual air temperature (MAAT) record based on the distribution of specific bacterial membrane lipids (i.e., branched glycerol dialkyl glycerol tetraethers; brGDGTs) from the last 36.0-4.7 kyr palaeolake record recovered by the Padul-15-05 sedimentary core (Padul, Sierra Nevada, southern Iberia). The fractional abundance of the three major groups of GDGTs present in the Padul sediments, GDGT-0, crenarchaeol and the summed brGDGTs, is comparable with that of other shallow and small (Peer reviewe

    Vegetation and geochemical responses to Holocene rapid climate change in the Sierra Nevada (southeastern Iberia): the Laguna Hondera record

    Get PDF
    High-altitude peat bogs and lacustrine records are very sensitive to climate changes and atmospheric dust input. Recent studies have shown a close relationship between regional climate aridity and enhanced eolian input to lake sediments. However, changes in regional-scale dust fluxes due to climate variability at short scales and how alpine environments were impacted by climatic- and human-induced environmental changes are not completely understood.Here we present a multi-proxy (palynological, geochemical and magnetic susceptibility) lake sediment record of climate variability in the Sierra Nevada (southeastern Iberian Peninsula) over the Holocene. Magnetic susceptibility and geochemical proxies obtained from the high mountain lake record of Laguna Hondera evidence humid conditions during the early Holocene, while a trend towards more arid conditions is recognized since  ∼ 7000&thinsp;cal&thinsp;yr&thinsp;BP, with enhanced Saharan eolian dust deposition until the present. This trend towards enhanced arid conditions was modulated by millennial-scale climate variability. Relative humid conditions occurred during the Iberian Roman Humid Period (2600–1450&thinsp;cal&thinsp;yr&thinsp;BP) and predominantly arid conditions occurred during the Dark Ages and the Medieval Climate Anomaly (1450–650&thinsp;cal&thinsp;yr&thinsp;BP). The Little Ice Age (650–150&thinsp;cal&thinsp;yr&thinsp;BP) is characterized in the Laguna Hondera record by an increase in runoff and a minimum in eolian input. In addition, we further suggest that human impact in the area is noticed through the record of Olea cultivation, Pinus reforestation and Pb pollution during the Industrial Period (150&thinsp;cal&thinsp;yr&thinsp;BP–present). Furthermore, we estimated that the correlation between Zr and Ca concentrations stands for Saharan dust input to the Sierra Nevada lake records. These assumptions support that present-day biochemical observations, pointing to eolian input as the main inorganic nutrient source for oligotrophic mountain lakes, are comparable to the past record of eolian supply to these high-altitude lakes.</p

    Earliest Known Use of Marine Resources by Neanderthals

    Get PDF
    Numerous studies along the northern Mediterranean borderland have documented the use of shellfish by Neanderthals but none of these finds are prior to Marine Isotopic Stage 3 (MIS 3). In this paper we present evidence that gathering and consumption of mollusks can now be traced back to the lowest level of the archaeological sequence at Bajondillo Cave (Málaga, Spain), dated during the MIS 6. The paper describes the taxonomical and taphonomical features of the mollusk assemblages from this level Bj19 and briefly touches upon those retrieved in levels Bj18 (MIS 5) and Bj17 (MIS 4), evidencing a continuity of the shellfishing activity that reaches to MIS 3. This evidence is substantiated on 29 datings through radiocarbon, thermoluminescence and U series methods. Obtained dates and paleoenvironmental records from the cave include isotopic, pollen, lithostratigraphic and sedimentological analyses and they are fully coherent with paleoclimate conditions expected for the different stages. We conclude that described use of shellfish resources by Neanderthals (H. neanderthalensis) in Southern Spain started ∼150 ka and were almost contemporaneous to Pinnacle Point (South Africa), when shellfishing is first documented in archaic modern humans

    Alpine bogs of southern Spain show human-induced environmental change superimposed on long-term natural variations

    Get PDF
    Recent studies have proved that high elevation environments, especially remote wetlands, are exceptional ecological sensors of global change. For example, European glaciers have retreated during the 20th century while the Sierra Nevada National Park in southern Spain witnessed the first complete disappearance of modern glaciers in Europe. Given that the effects of climatic fluctuations on local ecosystems are complex in these sensitive alpine areas, it is crucial to identify their long-term natural trends, ecological thresholds, and responses to human impact. In this study, the geochemical records from two adjacent alpine bogs in the protected Sierra Nevada National Park reveal different sensitivities and long-term environmental responses, despite similar natural forcings, such as solar radiation and the North Atlantic Oscillation, during the late Holocene. After the Industrial Revolution both bogs registered an independent, abrupt and enhanced response to the anthropogenic forcing, at the same time that the last glaciers disappeared. The different response recorded at each site suggests that the National Park and land managers of similar regions need to consider landscape and environmental evolution in addition to changing climate to fully understand implications of climate and human influence.This study was supported by the project P11-RNM 7332 of the “Junta de Andalucía”, the projects CGL2013-47038-R and CGL2015-67130-C2-1-R of the “Ministerio de Economía y Competitividad of Spain and Fondo Europeo de Desarrollo Regional FEDER” and the research group RNM0190 and RNM309 (Junta de Andalucía). A.G.-A. was also supported by a Marie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission (NAOSIPUK. Grant Number: PIEF-GA-2012-623027) and by a Ramón y Cajal Fellowship RYC-2015-18966 of the Spanish Government (Ministerio de Economía y Competividad). J.L.T. was also supported by a Small Research Grant by the Carnegie Trust for the Universities of Scotland and hosted the NAOSIPUK project (PIEF-GA-2012-623027). M. J. R-R acknowledges the PhD funding provided by Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (P11-RNM 7332)

    Holocene geochemical footprint from Semiarid alpine wetlands in southern Spain

    Get PDF
    Here we provide the geochemical dataset that our research group has collected after 10 years of investigation in the Sierra Nevada National Park in southern Spain. These data come from Holocene sedimentary records from four alpine sites (ranging from ∼2500 to ∼3000 masl): two peatlands and two shallow lakes. Different kinds of organic and inorganic analyses have been conducted. The organic matter in the bulk sediment was characterised using elemental measurements and isotope-ratio mass spectrometry (EA-IRMS). Leaf waxes in the sediment were investigated by means of chromatography with flame-ionization detection and mass spectrometry (GC-FID, GC-MS). Major, minor and trace elements of the sediments were analysed with atomic absorption (AAS), inductively coupled plasma mass spectrometry (ICP-MS), as well as X-ray scanning fluorescence. These data can be reused by environmental researchers and soil and land managers of the Sierra Nevada National Park and similar regions to identify the effect of natural climate change, overprinted by human impact, as well as to project new management policies in similar protected areas.Universidad de Granada. Departamento de Estratigrafía y PaleontologíaJunta de Andalucía: Grupos de investigación RNM190 y RNM309Junta de Andalucía: Proyecto P11-RNM-7332España, Ministerio de Economía y Competitividad: Proyecto CGL2013-47038-RRamón y Cajal Fellowship: RYC-2015-18966Small Research Grant by the Carnegie Trust for the Universities of ScotlandMarie Curie Intra-European Fellowship of the 7th Framework Programme for Research, Technological Development and Demonstration of the European Commission: NAOSIPUK. Grant Number: PIEF-GA-2012-62302

    The impact of oxic degradation on long chain alkyl diol distributions in Arabian Sea surface sediments

    Get PDF
    Oxygen exposure has a large impact on lipid biomarker preservation in surface sediments and may affect the application of organic proxies used for reconstructing past environmental conditions. To determine its effect on long chain alkyl diol and keto-ol based proxies, the distributions of these lipids was studied in nine surface sediments from the Murray Ridge in the Arabian Sea obtained from varying water depths (900–3000 m) but in close lateral proximity and, therefore, likely receiving a similar particle flux. Due to substantial differences in bottom water oxygen concentration (<3–77 μmol/L) and sedimentation rate, substantial differences exist in the time the biomarker lipids are exposed to oxygen in the sediment. Long chain alkyl diol and keto-ol concentrations in the surface sediments (0–0.5 cm) decreased progressively with increasing oxygen exposure time, suggesting increased oxic degradation. The 1,15-keto-ol/diol ratio (DOXI) increased slightly with oxygen exposure time as diols had apparently slightly higher degradation rates than keto-ols. The ratio of 1,14- vs. 1,13- or 1,15-diols, used as upwelling proxies, did not show substantial changes. However, the C30 1,15‐diol exhibited a slightly higher degradation rate than C28 and C30 1,13‐diols, and thus the Long chain Diol Index (LDI), used as sea surface temperature proxy, showed a negative correlation with the maximum residence time in the oxic zone of the sediment, resulting in ca. 2–3.5 °C change, when translated to temperature. The UK′37 index did not show significant changes with increasing oxygen exposure. This suggests that oxic degradation may affect temperature reconstructions using the LDI in oxic settings and where oxygen concentrations have varied substantially over time

    Radiogenic isotopes for deciphering terrigenous input provenance in the western Mediterranean

    No full text
    Radiogenic isotopic signatures in marine sediments can be used to trace terrigenous source areas and transport mechanisms, which are in turn related to climate variability. To date, most of the published studies using this approach have been focused on eastern Mediterranean sediments. In contrast, we study here the terrigenous input provenance in the westernmost Mediterranean (Alboran Sea basin) by using radiogenic isotope proxies and Nd model ages in a marine record spanning the last 20 ka. Nd, Sr and Pb isotopes, obtained from carbonate-free samples from the < 37μm size fraction, were used to characterize terrigenous variations, including eolian input. Substantial shifts in Pb isotopic signatures throughout the studied time interval reveal a change from North African dominated sources during the glacial period to European dominated sources during the Holocene. Nd and Sr shifts likewise indicate two main short-term changes in sediment provenance, during the last Heinrich event and the early-middle Holocene transition (ca. 8.9 ka cal. BP). Nd model ages over 1.45 Ga also support a contribution of an older component in the terrigenous source, likely Archaean material from the present Senegal region, during both periods. Conversely, terrigenous material mainly shows a dominant provenance from present-day Morocco, Mali, Mauritania, Niger, and Algeria, mixed with material from southern Iberia and southern France. Source variations in the westernmost Mediterranean were mainly driven by fluctuations in wind intensity and fluvial discharges. These fluctuations seem to have been modulated by the African monsoon system further conditioned by the ITZC migrations and the position of the North Atlantic anticyclone system
    corecore