72 research outputs found

    A laserball calibration device for the SNO+ scintillator phase

    Full text link
    Located 2 km underground in SNOLAB, Sudbury, Canada, SNO+ is a large scale liquid scintillator experiment that primarily aims to search for neutrinoless double beta decay. Whilst SNO+ has light and radioactive calibration sources external to the inner volume, an internally deployed optical source is necessary for the full characterization of the detector model. A laser diffuser ball developed for SNO has previously demonstrated to be an effective optical calibration device for both SNO and SNO+ water phase. Since the introduction of liquid scintillator for SNO+, the material compatibility, cleanliness, and radiopurity requirements of any materials in contact with the internal medium have increased. Improving on the original SNO laserball design, a new laserball calibration device has been developed for the SNO+ scintillator phase with the goal of measuring the optical properties of the detector and performing routine PMT gain and timing calibrations. Simulations have been written to model the diffusion properties to optimise optical and temporal performance for calibration. Prototype laserballs have been built and characterised, demonstrating sub-ns timing resolution and a quasi-isotropic light distributionComment: 21 pages, 16 figure

    Clinical impact of genomic testing in patients with suspected monogenic kidney disease

    Get PDF
    Purpose: To determine the diagnostic yield and clinical impact of exome sequencing (ES) in patients with suspected monogenic kidney disease. Methods: We performed clinically accredited singleton ES in a prospectively ascertained cohort of 204 patients assessed in multidisciplinary renal genetics clinics at four tertiary hospitals in Melbourne, Australia. Results: ES identified a molecular diagnosis in 80 (39%) patients, encompassing 35 distinct genetic disorders. Younger age at presentation was independently associated with an ES diagnosis (p < 0.001). Of those diagnosed, 31/80 (39%) had a change in their clinical diagnosis. ES diagnosis was considered to have contributed to management in 47/80 (59%), including negating the need for diagnostic renal biopsy in 10/80 (13%), changing surveillance in 35/80 (44%), and changing the treatment plan in 16/80 (20%). In cases with no change to management in the proband, the ES result had implications for the management of family members in 26/33 (79%). Cascade testing was subsequently offered to 40/80 families (50%). Conclusion: In this pragmatic pediatric and adult cohort with suspected monogenic kidney disease, ES had high diagnostic and clinical utility. Our findings, including predictors of positive diagnosis, can be used to guide clinical practice and health service design

    Measurement of neutron-proton capture in the SNO+ water phase

    Get PDF
    The SNO+ experiment collected data as a low-threshold water Cherenkov detector from September 2017 to July 2019. Measurements of the 2.2-MeV γ\gamma produced by neutron capture on hydrogen have been made using an Am-Be calibration source, for which a large fraction of emitted neutrons are produced simultaneously with a 4.4-MeV γ\gamma. Analysis of the delayed coincidence between the 4.4-MeV γ\gamma and the 2.2-MeV capture γ\gamma revealed a neutron detection efficiency that is centered around 50% and varies at the level of 1% across the inner region of the detector, which to our knowledge is the highest efficiency achieved among pure water Cherenkov detectors. In addition, the neutron capture time constant was measured and converted to a thermal neutron-proton capture cross section of 336.31.5+1.2336.3^{+1.2}_{-1.5} mb

    Measurement of the 8B solar neutrino flux in SNO+ with very low backgrounds

    Get PDF
    A measurement of the 8B solar neutrino flux has been made using a 69.2 kt-day dataset acquired with the SNO+ detector during its water commissioning phase. At energies above 6 MeV the dataset is an extremely pure sample of solar neutrino elastic scattering events, owing primarily to the detector’s deep location, allowing an accurate measurement with relatively little exposure. In that energy region the best fit background rate is 0.25+0.09−0.07  events/kt−day, significantly lower than the measured solar neutrino event rate in that energy range, which is 1.03+0.13−0.12  events/kt−day. Also using data below this threshold, down to 5 MeV, fits of the solar neutrino event direction yielded an observed flux of 2.53+0.31−0.28(stat)+0.13−0.10(syst)×106  cm−2 s−1, assuming no neutrino oscillations. This rate is consistent with matter enhanced neutrino oscillations and measurements from other experiments

    Improved search for invisible modes of nucleon decay in water with the SNO+ detector

    Get PDF
    This paper reports results from a search for single and multi-nucleon disappearance from the 16^{16}O nucleus in water within the \snoplus{} detector using all of the available data. These so-called "invisible" decays do not directly deposit energy within the detector but are instead detected through their subsequent nuclear de-excitation and gamma-ray emission. New limits are given for the partial lifetimes: τ(ninv)>9.0×1029\tau(n\rightarrow inv) > 9.0\times10^{29} years, τ(pinv)>9.6×1029\tau(p\rightarrow inv) > 9.6\times10^{29} years, τ(nninv)>1.5×1028\tau(nn\rightarrow inv) > 1.5\times10^{28} years, τ(npinv)>6.0×1028\tau(np\rightarrow inv) > 6.0\times10^{28} years, and τ(ppinv)>1.1×1029\tau(pp\rightarrow inv) > 1.1\times10^{29} years at 90\% Bayesian credibility level (with a prior uniform in rate). All but the (nninvnn\rightarrow inv) results improve on existing limits by a factor of about 3.info:eu-repo/semantics/publishedVersio

    Observation of Antineutrinos from Distant Reactors using Pure Water at SNO+

    Full text link
    The SNO+ collaboration reports the first observation of reactor antineutrinos in a Cherenkov detector. The nearest nuclear reactors are located 240 km away in Ontario, Canada. This analysis used events with energies lower than in any previous analysis with a large water Cherenkov detector. Two analytical methods were used to distinguish reactor antineutrinos from background events in 190 days of data and yielded consistent observations of antineutrinos with a combined significance of 3.5 σ\sigma.Comment: v2: add missing author, add link to supplemental materia

    Impact of cross-section uncertainties on supernova neutrino spectral parameter fitting in the Deep Underground Neutrino Experiment

    Get PDF
    A primary goal of the upcoming Deep Underground Neutrino Experiment (DUNE) is to measure the O(10)\mathcal{O}(10) MeV neutrinos produced by a Galactic core-collapse supernova if one should occur during the lifetime of the experiment. The liquid-argon-based detectors planned for DUNE are expected to be uniquely sensitive to the νe\nu_e component of the supernova flux, enabling a wide variety of physics and astrophysics measurements. A key requirement for a correct interpretation of these measurements is a good understanding of the energy-dependent total cross section σ(Eν)\sigma(E_\nu) for charged-current νe\nu_e absorption on argon. In the context of a simulated extraction of supernova νe\nu_e spectral parameters from a toy analysis, we investigate the impact of σ(Eν)\sigma(E_\nu) modeling uncertainties on DUNE's supernova neutrino physics sensitivity for the first time. We find that the currently large theoretical uncertainties on σ(Eν)\sigma(E_\nu) must be substantially reduced before the νe\nu_e flux parameters can be extracted reliably: in the absence of external constraints, a measurement of the integrated neutrino luminosity with less than 10\% bias with DUNE requires σ(Eν)\sigma(E_\nu) to be known to about 5%. The neutrino spectral shape parameters can be known to better than 10% for a 20% uncertainty on the cross-section scale, although they will be sensitive to uncertainties on the shape of σ(Eν)\sigma(E_\nu). A direct measurement of low-energy νe\nu_e-argon scattering would be invaluable for improving the theoretical precision to the needed level.Comment: 25 pages, 21 figure

    Development, characterisation, and deployment of the SNO+ liquid scintillator

    Get PDF
    A liquid scintillator consisting of linear alkylbenzene as the solvent and 2,5-diphenyloxazole as the fluor was developed for the SNO+ experiment. This mixture was chosen as it is compatible with acrylic and has a competitive light yield to pre-existing liquid scintillators while conferring other advantages including longer attenuation lengths, superior safety characteristics, chemical simplicity, ease of handling, and logistical availability. Its properties have been extensively characterized and are presented here. This liquid scintillator is now used in several neutrino physics experiments in addition to SNO+
    corecore