1,395 research outputs found

    Observational and theoretical studies of the evolving structure of baroclinic waves

    Get PDF
    Dynamical processes involved in comma cloud formation, and passive tracer evolution in a baroclinic wave are discussed. An analytical solution was obtained demonstrating the complex nongeostrophic flow pattern involved in the redistribution of low level constituents in a finite amplitude baroclinic wave, and in the formation of the typical humidity and cloud distributions in such a wave. Observational and theoretical studies of blocking weather patterns in middle latitude flows were studied. The differences in the energy and enstrophy cascades in blocking and nonblocking situations were shown. It was established that pronounced upscale flow of both of these quantities, from intermediate to planetary scales, occurs during blocking episodes. The upscale flux of enstrophy, in particular, suggests that the persistence of blocking periods may be due to reduced dissipation of the large scale circulation and therefore entail some above normal predictability

    The automated array assembly task of the low-cost silicon solar array project, phase 2

    Get PDF
    Several specific processing steps as part of a total process sequence for manufacturing silicon solar cells were studied. Ion implantation was identified as the preferred process step for impurity doping. Unanalyzed beam ion implantation was shown to have major cost advantages over analyzed beam implantation. Further, high quality cells were fabricated using a high current unanalyzed beam. Mechanically masked plasma patterning of silicon nitride was shown to be capable of forming fine lines on silicon surfaces with spacings between mask and substrate as great as 250 micrometers. Extensive work was performed on advances in plated metallization. The need for the thick electroless palladium layer was eliminated. Further, copper was successfully utilized as a conductor layer utilizing nickel as a barrier to copper diffusion into the silicon. Plasma etching of silicon for texturing and saw damage removal was shown technically feasible but not cost effective compared to wet chemical etching techniques

    Air/Sea Transfer of Highly Soluble Gases Over Coastal Waters

    Get PDF
    The deposition of soluble trace gases to the sea surface is not well studied due to a lack of flux measurements over the ocean. Here we report simultaneous air/sea eddy covariance flux measurements of water vapor, sulfur dioxide (SO2), and momentum from a coastal North Atlantic pier. Gas transfer velocities were on average about 20% lower for SO2 than for H2O. This difference is attributed to the difference in molecular diffusivity between the two molecules (DSO2/DH2O = 0.5), in reasonable agreement with bulk parameterizations in air/sea gas models. This study demonstrates that it is possible to observe the effect of molecular diffusivity on air-side resistance to gas transfer. The slope of observed relationship between gas transfer velocity and friction velocity is slightly smaller than predicted by gas transfer models, possibly due to wind/wave interactions that are unaccounted for in current models

    Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics

    Get PDF
    Distributions of aerosol-associated soluble ions over much of the South Pacific were determined by sampling from the NASA DC-8 as part of the Pacific Exploratory Mission (PEM) Tropics campaign. The mixing ratios of all ionic species were surprisingly low throughout the free troposphere (2-12 km), despite the pervasive influence from biomass burning plumes advecting over the South Pacific from the west during PEM-Tropics. At the same time, the specific activity of 7Be frequently exceeded 1000 fCi m-3 through much of the depth of the troposphere. These distributions indicate that the plumes must have been efficiently scavenged by precipitation (removing the soluble ions), but that the scavenging must have occurred far upwind of the DC-8 sampling regions (otherwise 7Be activities would also have been low). This inference is supported by large enhancements of HNO3 and carboxylic acids in many of the plumes, as these soluble acidic gases would also be readily scavenged in any precipitation events. Decreasing mixing ratios of NH4 + with altitude in all South Pacific regions sampled provide support for recent suggestions that oceanic emissions of NH3 constitute a significant source far from continents. Our sampling below 2 km reaffirms the latitudinal pattern in the methylsulfonate/non-sea-salt sulfate (MSA/nss SO4 =) molar ratio established through surface-based and shipboard sampling, with values increasing from \u3c0.05 in the tropics to nearly 0.6 at 70°S. However, we also found very high values of this ratio (0.2-0.5) at 10 km altitude above the intertropical convergence zone near 10°N. It appears that wet convective pumping of dimethylsulfide from the tropical marine boundary layer is responsible for the high values of the MSA/nss SO4 = ratio in the tropical upper troposphere. This finding complicates use of this ratio to infer the zonal origin of biogenic S transported long distances. Copyright 1999 by the American Geophysical Union

    Modeling the dynamics of glacial cycles

    Full text link
    This article is concerned with the dynamics of glacial cycles observed in the geological record of the Pleistocene Epoch. It focuses on a conceptual model proposed by Maasch and Saltzman [J. Geophys. Res.,95, D2 (1990), pp. 1955-1963], which is based on physical arguments and emphasizes the role of atmospheric CO2 in the generation and persistence of periodic orbits (limit cycles). The model consists of three ordinary differential equations with four parameters for the anomalies of the total global ice mass, the atmospheric CO2 concentration, and the volume of the North Atlantic Deep Water (NADW). In this article, it is shown that a simplified two-dimensional symmetric version displays many of the essential features of the full model, including equilibrium states, limit cycles, their basic bifurcations, and a Bogdanov-Takens point that serves as an organizing center for the local and global dynamics. Also, symmetry breaking splits the Bogdanov-Takens point into two, with different local dynamics in their neighborhoods

    Nonlinear rheology of colloidal dispersions

    Get PDF
    Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states.Comment: Review articl

    Lorenz-like systems and classical dynamical equations with memory forcing: a new point of view for singling out the origin of chaos

    Full text link
    A novel view for the emergence of chaos in Lorenz-like systems is presented. For such purpose, the Lorenz problem is reformulated in a classical mechanical form and it turns out to be equivalent to the problem of a damped and forced one dimensional motion of a particle in a two-well potential, with a forcing term depending on the ``memory'' of the particle past motion. The dynamics of the original Lorenz system in the new particle phase space can then be rewritten in terms of an one-dimensional first-exit-time problem. The emergence of chaos turns out to be due to the discontinuous solutions of the transcendental equation ruling the time for the particle to cross the intermediate potential wall. The whole problem is tackled analytically deriving a piecewise linearized Lorenz-like system which preserves all the essential properties of the original model.Comment: 48 pages, 25 figure
    • 

    corecore