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1.0	 SUMMARY

Several specific processing steps, as part of a total process sequence for

manufacturing silicon solar cells, were studied during this contract,

Ion implantation has been Identified as the Motorola perforred

process step for impurity doping. Unanalyzed beam ion Implantation has been

shown to have major cost advantages over analyzed beam implantation. Further,

high quality cells have been fabricated using a high current unanalyzed beam.

Mechanically masked plasma patterning of silicon nitride has been

shown to be ce.pable of forming fine lines on silicon surfaces with spacings

between mask and substrate as great as 250 pm (10 mils).

Extensive work was performed on advances in plated metallization. The

need for the thick electroless palladium layer has been eliminated. Further,

copper has been successfully utilized as a conductor layer, utilizing nickel as a

barrier to copper diffusion into the silicon.

Plasma etching of silicon for texturing and saw damage removal has been

shown technically feasible, but not cost-effective compared to wet chemical

etching techniques.
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2.0	 INTRODUCTION

There is a high probability that flat platm solar photovoltaic modules

will become a major source of electricity generation throu^.,.hout most of the

world, and that the silicon solar cell will be the preferred generating element.

In order to provide a realistic framework on which to build an effective

program of R&D and demonstration for silicon solar cell modules, a series

of objectives tins been established to lead to a 198b goal of 700/peak watt (1980

At this price, solar-generated electricity will be able -to compete with

electric power generated by any other means, provided the so^ar cell modules

are sufficiently reliable (e.g., have a mean life of 20 years).

To reach the 1986 JPL goal will require several advancements: 1) a

cheaper source of pure silicon, 2) a much more economical way of transforming

the source silicon Into largo, thIn, (essentially) single crystal substrates

hav 
I 
nq a contfrol I od goOmotry, '.5) an economica I , I -rge modu I e package that

will protect the interconnected solar cells It contains for at least 20 years

from degradation caused by exposure to the weather, 4) an automated process

sequence that produces high efficier,cy, reliable, cheap solar cells, tests

them, Interconnects them, and encapsulates them, and 5) a large market, of the

order of 500 Mw/year.

When the JPL/ERDA Low-Cost Solar Array USA) Project started, the Motorola

Solar Energy R&D Department participated In the Phase I of the Automated Array

Assembly Task. The Phase I study identified a few potentially powerful process

sequences for silicon solar cell production, and experimentally verified the

overall consistency of the process sequence. It concluded that no basic

technological innovations were necessary for solar cell fabrication or

encapsulation in order to meet the long range LSA Project goals. Detailed

2
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economic analyses were perfo;°med, based on today's technologies, and showed

that it should be possible to meet the JPL. cost projections for solar panels.

The overall conch„-Mon of the Array Automated Assembly Task, Phase 1,

was one of cautious optimism. The present program, for Phase 2, has as its

objective the further development of specific process steps (in a particular,

powerful process sequence) Leading to a completely specified solar cell (and

module) production process sequence. This sequence must be capable of a

high degree of automation and control 	 A detailed economic analysis is a

major part of the program to ensure that the most cost-effective approach is

taken.

During the first part of the Phasa Il program, feasibility of the process

sequencoO nd its individual process steps were confirmed. This, the second part

of the Phase Il program, is concerned with specification of process control

parameters and limits which will allow progress toward automation of the process

sequence. The main objective of this contract is sufficient process control

limit definition to permit advanced equipment prototypes to be designed for

incorporation Into an advanced pilot line facility.

3



3.0	 T5CNNICAL DISCUSSION

3.1	 ION IMPLANTATION

Studies on torn Implantation for impurity doping In solar cell structures

have emphasized the areas of process control and high current unanalyzed beams.

3.1.1	 SILICON SURFACE LAYSR CONTAMINATION DURING ION IMPLANTATION

it has been noted In the literature (1) that the ion implantation process can,

In itself, be a source of surface contamination. Although the process Is done

In vacuum, residual partial pressures of hydrocarbons from diffusion pump oil can

result In polymerized hydrocarbon films because of bombardment , by the ion beam.

Such films may change the etching properties of the silicon surface and, ultimately,

may affect the quality and integrity of metal-semiconductor electrical contacts.

Ion implantation using large ion beam currents tin the milliamp r°ngo)

may be especially susceptible to this surface contamination effect.

A clean, film-free silicon Is hydrophobic, i.e., water does not wet

the silicon surface. Alternatively, such surface films as silicon dioxide (S102),

silicon nitride (Si 3N4 ), and photoresist are hydrophilic, being completely

wet by water. These properties ire useful for control In wet chemistry

processing steps, allowing definitive end-point detection when removing surface

films from silicon.

In using the Varian/Extrion model 200-1000 high current machine to form

solar cell ,junction and back surface enhancement layers, an etch resistance

phenomenon has been repeatedly observed. Wafers implanted with high doses

In this high current machine could not be made hydrophobic in hydreflc)uric

acid solutions, implying that some surface cc..it •amination is present.

(1) K. A. Pikar, "Ion implantation in Silicon" Applied Solid State Science
Volume 5, R. Wolfe, ed., Academic Press, N. Y., 1975.

4



Such surface contamination may present production control problems, and a clean

silicon surface In the ohmic conl•act areas is imperative if consistent metal-semi

conductor contacts are to be produced. 'A recent paper in the literature (2) has

addressed this problem. It has found that ion-induced carbonaceous layers could

be removed from the silicon surface by anodic oxidation with subsequent stripping

in HF solution. This technique appears to satisfactorily restore the silicon surface

cleanliness. (As long as the carbonaceous layer and subsequent oxide growth are at

most a few hundred Angstroms thick, the properties of the original silicon surface

may not be altered significantly.)

Aiternativsly, investigations were performed at Motorola using both

thermal and plasma oxidation, followed by oxide stripping, to, achieve the same

cleaning effect. Oxide layers grown in the range from 2508 to 1000 thick

have been effective in restoring the hydrophobic nature of the silicon surface

after stripping that oxide in dilute HF solutions. For a thermal oxide, growth

can be accomplished during or after a thermal activation anneal cycle. This can

be done in the same furnace tube or in a separate furnace tube. As for a plasma

process, the only plasma oxidation cycle considered to date provides about

dOn of SiO2 at most. Therefore, this cycle must be repeated several times,

stripping the oxide after each cycle, to effectively remove the carbonaceous

layer.

The fact that a polymerized hydrocarbon film or carbonaceous layer is

responsible for the unusual etching/cleaning characteristics of high dose,

ion implanted wafers is assumed (but not proven) from the cited reports in

the literature and the observation that the oxidation/strip technique

sucessfully restores the surface. if this assumption is correct, the best

processing response is to eliminate the effect in the first place, rather

than to try to cure it afterwards..

(2) M. Y. Tsai, et. al., "Study of Surface Contamination Produced During
High Dose ion Implantation, "J. Electrochem. Sac.; Sol-St. Sci. and Tech.,
Vo. 126, No. 1, Jan. 1979, pp 98 - 102.

i
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As recommended in Reference 2, the hydrocarbon vacuum pump oils

used In the ion implanter vacuum system were removed and replaced with

prefluorinated polyether pump oil. Examination of implanted surfaces then

showed an improved ability to become hydrophobic, but not to the extent deemed

desirable. Subsequent examination of the pump oils showed the presence of some

residual hydrocarbons from the original pump oils. Apparently, sufficient

quantities of these oils are still present in the system to cause difficulties.

A thorough dismantling and cleaning of all vacuum components appears

necessary to eliminate this residue. The results, while somewhat

inconclusive, Indicate tie desirability of the perfluorinated polyether oils.

Future vacuum systems for ion implanters should incorporate these oils from

the start to eliminate subsequent contamination from the hydrocarbon oils.

3 .1.2	 COMPARISON OF STARTING MATERIALS THROUGH ION iMPLANTATION

A comparison of different Ingot-grown starting wafers for ion implanted

solar cells has been initiated. Wafers cut from both float zone and Czochralski

Ingots have been ion implanted and activation annealed for comparison. Early

experiments indicated the possibility that float zone material was superior to

Czochralski material-. Accordingly, a more defined experiment has been performed

to study the validity of the early results.

To minimize possible processing variables, bare, smooth, non-texture

etched wafers have been utilized for the comparison. While a number of lots

have been run, three representative groups are reported here. Each of the

three groups consisted of 24 wafers. In each lot, one half (12)

of the wafers were float zone wafers purchased from Wacker. These wafers

were utilized as controls for comparison between lots. The other half of

each lot was comprised of Czochralski wafers from Wacker, Monsanto, and

Y
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Motorola, respectively. All substrates were p-type, but various resistivity

ranges were utilized.

Wafers were front ion implanted at 35 KeV with phosphorus at a dose of

2 x 10 15/cm2 . Back surface ion implants of 4 x 10 15 boron were also performed.

All wafers were then given a furnace activation anneal of 16 minutes at 8500C

in a nitrogen ambient, followed by a 120 minute anneal In nitrogen at 550oC.

Open circuit voltage readings were recorded for each wafer under both room

(fluorescent) lighting and a tungsten (ELH) simulation of 1-sun. The room

light open circuit voltage gives an indication of the cell fill factor -- high

values of room light VOC indicate good fill fn ,:tor. For these wafers, short

circuit current readings were identified by measurement of the illuminated cells In

reverse saturation. The results of these tests are shown in Table 1 as an average

for each half lot.

These measurements indicate that, within experimental variations, all

statistical difference

circuit voltage. Further

-eflection coating and

at this stage of cell

differences have been

materials give comparable values of 1-sun parameters. A

is seen for the Czochralski material for room light open

processing of these cells through a silicon nitride anti

pre-metal patterning shows that the variation :disappears

fabrication, For all practical purposes, thus, no basic

observed between the various ion implanted materials.

3.1.3	 UNANALYZED BEAM ION IMPLANTATION

Ion implantation equipment which is commercially available today is not
r

capable of being incorporated into a process sequence which can meet the 1986

DOE goal of $0.70/peak watt (1980 dollars). There are several factors which limit

today's implanters. First, the throughput of cells in today's machines is too low.

7
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being limited both by low ion beam currents and by mechanical tranport mechanisms.

Second, today's machines are very complex, resulting in three specific problems:

(1) high cost, (2) large size, and (3) extensive maintenance. Restated, the cost

per machine is far too high for the throughput rate of the equipment, while the

large size and low throughput require significant additional capital investment for

building floorspace.

Two major areas of cost reduction are available for ion implantation. First,

major increases in ion beam current levels are necessary to make ion

implantation a viable long range solar cell manufacturing technology. (Increases

of more than an order of magnitude, to at least 100 mA, are required.) In

addition, reduction of equipment cost Is required to ensure That ion implantation

is a prefr4rred technology for future solar cell high volume manufacturing. 	 If

successful, these innovations would ensure that ion implantation will be the

favored long range process for both p-n junction and BSF formation. A new

machine design philosophy, however, is required to achieve these objectives.

One of the major factors now limiting ion beam current (and throughput)

is the requirement of mass analysis of the ion beam. In general, any ion beam

will contain all of the possible molecular and atomic species which can be

formed from the source material. In addition, the ion beam may have foreign

species from the source chamber, vacuum walls, or pump oil. In order to implant

only one atomic or molecular specie, the beam is mass analyzed to eliminate all

the undesired species.

Mass analysis is commonly performed by accelerating the ion beam, and

then changing the direction of the beam by passing it through a magnetic field.

Ions which are too heavy are not bent enough, while ions which are too light

are bent beyond the desired direction. Only ions with the specifically

desired mass can pass through the analyzer. By changing the field strength

G 1r PACE izi

OF pOOR QUALITY
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of the analyzing magnet, the desired specie can be chosen. Mass analyzed

spectra for three source gases, phosphine (PH3 ), ursine (AsH3 ), and boron

trifluoride (BF 3 ), are presented in Figures 1 through 3, respectively.

The mass analysis process creates a non-focused diverging ion beam.

Following analysis, thus, the beam is normally focused by magnetic fields

to the desired beam geometry. While this is suitable for small beam currents,
.

at high beam currents the beam becomes self-shielding from the magnetic fields,

.	 requiring greater complexity of equipment.

The equipment components for mass analysis and beam focusing are both large

and expensive, major factors in the total cost and floorspace requirements

of present equipment. If mass analysis is not, in fact, required for ion

implanted solar cells, the equipment can be greatly simplified. Such a

simplification would be highly desirable from a cost stand-point.

3.1.3.1	 SIMULATED UNANALYZED BEAMS

A series of experiments to Investigate the feasibility of utilizing a

simulated unanalyzed beam were performed. For these experiments, all of the

major components of the ion beam, as identified in the spectra of Figures 1

through 3, are implanted into the cell in proportion to their relative

intensities in the spectra. This, in effect, simulates an unanalyzed beam

implantation from the gaseous sources. it is not a full simulation, however,

since trace components of the beam are ignored. However, if high quality

solar cells can be fabricated from the present experiments, the potential

feasibility of an unanalyzed beam machine utilizing gaseous sources can be

established. The experiments, thus, while not sufficient, provide necessary

information for the utilization of unanalyzed ion beams for solar cell

fabrication.

10
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In these simulations, the major tonic species present in the ion source

are Implanted in proportion to their relative concentrations in the source

mass spectrum. Different isotopes of the same species are not implanted.

The species implanted are identified in Table Z for each source. Groups of wafers

for fabricating solar cells are divided such that one half of each lot

received the simulated unanalyzed Implant.

Cei•Is were completed for both the arsine and phosphine sources. Data

for the specific cells made from the analyzed and simulated unanalyzed implants

are shown In Table 3. For these two types of Implants, no statistical difference

can be observed for the arsine and phosphine sources. For arsenic and

phosphorus doping, thus, no deieterious effects can be seen from the

implantation of hydrogenated ions.

While cells were not completed, Ion implantation using all of

the major beam peaks In a BF  Ion spectrum has been shown to produce high

quality photoresponse in silicon p-on-n solar cells. Substrates of 7 mil thickness,

nominally 0.1 n-cm arsenic doping, and smooth surfaces, have shown open

circuit voltages in excess of 600 mV and very high fill factors. In all

cases, the BF  component of the ion spectrum was implanted first, followed

by other boron and fluorine components. The results show, in fact, the

fluorine is performing some "gettering" effect.

The use of a simulated unanalyzed beam certainly appears feasible based

on these experiments. The potential problem of implanting trace impurities,

however, remains unaddressed by these simulated techniques.

3.1.3.2	 UNANALYZED BEAMS

In order to address the possible implantation of trace impurities in

an unanalyzed beam, implantatloir with a totally unanalyzed beam is necessary.

14
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In addition to eliminating mass analysis, a second change in implanter design

is desirable to accommodate a very high ion beam current. The change is to

utilize a large area beam rather than a sm.11 area focused beam. If very high

beam currents are focused to a small area, current densities would be very high.

These high current densities are capable of causing significant localized

substrate heating offects, thought now to be deleterious to device performance.

Such localized heating effects, caused by the very high local dose rate, can be

reduced or eliminated through the use of lower localized dose rates available

through a large area, high current Ion beam.

Both features of a totally non-analyzed ion beam and a Large area

beam are available through the modification of commercially available ion

milling equipment. Modifications for safety, since phosphorus, arsenic, and

some boron compounds are highly toxic, are necessary.

ion milling equipment has many features desired for mass production of low

cost solar cells. A comparison of similarities and differences between

conventional Ion implanters and ion millers is shown in Table 4. The ion miller

has the desirable features identified for future implantation equipment.

The Solar Energy R&D Department at Motorola does not now posess an ion

milling unit. Arrangements were made, however, to modify a unit in

another area for preliminary experiments.

In an attempt to fabricate n-on-p junctions for solar cell devices with

ow energy, hi beam current, unanalyzed ion Implantation means, an experiment

was organized to use a Commonwealth Scientific Ion Milling machine. This

machine has a 4" diameter ion gun, 2.0 keV and 0.4 mA cm-2 capabilities. It was

modified to accept the dopant gas, 15% PHA in 85" H2 and to exhaust the waste

gases in a safe manner.
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TABLE 4

A COMPARISON OF CONVENTIONAL ION IMPLANTATION
AND ION MILLING EQUIPMENT

.

SIMILARITIES:

M	

HIGH VACUUM

AREA DEPENDENT

UTILIZE ACCELERATED IONS

DIRECTIONAL

DIFFERENCES

CHARACTERISTIC	 IMPLANTER	 MILLER

IONS	 AOPANT SPECIES	 W)STLY ARGON

ANALYSIS	 ANALYZED	 UNANALYZED

ENERGY	 5 - 200 keV	 0.3 - 1.0 keV

CURRENT	 1 - 10 mA	 200 - 4000 mA

AREA	 {10 cm 	 ?200 cm 

VACUUM	 10-0	 10 
5 
TORR	 2 - 5 x 10-4 TORR

s
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Substrate material chosen for this first experiment was Wacker float

zone 1.8 _ 3.0 P -cm, chemically etched, nontextured. In order to establish

useful ranges for the first at-tempt,: various process parameters were given

wide limits. The p+ buck surfaco enhancement layer was fabricated by several

means. Fifty percent of the wafers were ion implanted with B 11 at a

concentratio,r of 4 x 10 	 cm-2 , 25% were diffused with "standard" 
BCI3, 

and

25% undoped. Both of these process staps were completed before the p-n

junction was formed and both saw the anneal cycle that followed the non-mass-

analyzed ion Implantation (ion milling) process step. The last 25% were ion

implanted and annealed with 4 x. 10 15 atoms cm-2 of 
611 

just before metallization.

No appreciable differences were seen between groups with ion implanted and

diffused methods of back enhancement fabrication.

The n+ front surface was formed by utilizing the PH 3 + H2 mixture in the

ion miller. This was the first occasion that this species and mixture of gas

had been used to achieve an ion beam in this machine; however, no difficulty

was experienced at all.

The substrate stage has 8 ea. 3 1" diameter wafer capability and 4 ion

milling runs were done at different accelerating voltages and exposure

times. All the runs were done at about 0.10 to 0.15 mA cm 2 of beam current.

The first group was implanted in the milling machine with 1.5 keV of energy and

with each wafer passed in front of an aperature in a shield which allowed about

3 - 4 seconds of beam exposure on each wafer in turn corresponding to near

3 x 10 15 ions cm 2 . The second group was implanted in the miller with 2.0

keV of energy with each wafer passing twice in front of the aperature for about

6 - 8 seconds of exposure, or approximately 6 x 10 15 cm 
2.. 

The third group was

not shielded at all and all 8 wafers saw about 2 - 3 seconds of beam. The fourth

group was not shielded and saw about 20 seconds of beam. or about 6 x 10 16 ions cm 2.

The anneal cycle was 15 min. at 850°C in N 2 followed by 120 min. at 5500C

in N2.

19
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A mesa configuration on the cells (Junction edge-etched structure) was achieved

by stacking all wafers in direct contact and plasma etching the edges of all wafers.

The AR coating was performed by first forming a thin silicon dioxide (Si02)

layer on the wafers followed by vacuum deposition of 7009 of Si 3N4 and a further

anneal of 120 min. at 550'C in N 2 . The thin oxide layer was grown by a plasma

oxidation step for 10 minutes. In the plasma process, a plasma of oxygen ions Is

farmed from 02 in a standard plasma cl(aning system widely used in the semiconductor

industry. The energetic oxygen Ions from the plasma are capable of uniformly

oxidizing silicon surfaces to form thin S102 layers at temperatures near room

temperatures.

The preohmic pattern was accomplished with standard photoresist methods.

The pre-metal probe of electrical parameters showed group #4 (20 sec. of

beam) to be the only group worth metallization.

Metallization was done by immersion, electroless and electrolytic

methods to form a Pd-Ni-Cu-N! layering.

Testing before metallization gave the parameter estimates for the eight

cells of group #4, shown in Table 5.

V-1 characteristics (AM1) following metal of 4 of the cells are shown in

Figures 4 - 7.

The results of this experiment show that solar cells can be made with

totally unanalyzed beam high current ion sources. The potential cost benefits

of this technique demand that future efforts be expended in this area.

3.2	 PLASMA ETCHING STUDIES

The use of plasma processing as a replacement for wet chemistry

steps has been studied during this contract. Specifically, plasma replacement

of three steps has been investigated: (1) Mechanically masked plasma patterning

of silicon nitride layers, (2) plasma etching of silicon to remove either surface

layers or sawing damage, and (3) plasma texture etching.,}
"oc" R%	 F4 ♦^ f5a

c.. ts-, v 	 ;	 v ! y
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4

TABLE 5

PARAMETER ESTIMATES OF UNANAYLZED BEAM
ION IMPLANTED CELLS PRIOR TO METALLIZATION

LOT NO.	 WAFER NO.	 OPEN CIRCUI T VOLTAGE	 SHORT CIRCUIT CURRENT

4	

SCO18	 5	 594 mV	 1135 mA
6	 563	 1110
17	 523	 780

18	 593	 1380

SCO24	 8	 560	 1080

9	 578	 1200
10	 570	 1230

11	 561	 1080

1
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3.2.1	 PLASMA PATTERNING

In the solar cell fabrication process sequence under development at

Motorola, a silicon nitride layer deposited on the surface of the solar cell

must be etched away in the configuration of the desired metal contact pattern.

This patterning of the silicon nitride has been achieved by use of a plasma

etching technique.

A baseline process sequen; „e was established early in the contract

extension period for the plasma patterning process, and applied to textured

surfaces. From this baseline, variations were performed to improve

manufacturability, reproducibility, and control of the plasma patterning

technology. The technology is aimed at selectively and simultaneously

etching ohmic contact patterns into the silicon nitride on both sides of a

silicon substrate without significantly etching the silicon surface beneath

those ohmic areas.

3.2.1.1	 THE BASELINE PROCESS

The best pattern definition and selectivity have been achieved

by etching in what is referred to as the "reactive ion etching” mode. In

this mode, the wafer to be patterned Is placed on top of the same electrode

to which RF energy is applied. A plasma is struck between that electrode and

the surrounding walls of the vacuum chamber, which is at ground potential. The

plasma is established at low pressure, less than 0.1 Torr. The RF electrode

is capacitively coupled to the RF power supply and will float to a negative

DC bias with respect to the plasma potential. This estabiishe^-, an electric

field which can accelerate ions from the plasma to the surface of the wafer

supported on the RF electrode. This effect enhances the anisotropy of the plasma

etching reaction and helps promote good line definition and mask opening

replication without etching beneath the masked areas.
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The baseline plasma patterning process sequence is described In the

following paragraphs,

A steel shadow mask with openings where the silicon nitride is to be

etched away is mechanically aligned to the front surface of a silicon nitride

coated solar cell. The cell and mask are placed on a sheet of flat ceramic

magnets which serve to hold the steel mask in registration with the cell

surface..

The magnetic plate, cell, and mask assembly is positioned in a vacuum

chamber on the RF electrode plate. (Plate area is 196 cm2 .) The electrode

and chamber are preset at a temperate°ure of 5000.

The chamber is closed and pumped down to below 0.05 Torr. This requires

about 30 seconds.

When pump-down is complete, RF power (100 watts at 13.56 MHz) and etchant

gas flow (approximately 1 cm3/min.) are started simultaneously to generate the

plasma. In work to date, a gas mixture of 8% oxygen in Freon 14 (CF 4 ) has been

used. The plasma is maintained for four minutes.

At the completion of the etch cycle, the RF power and etchant gas flow are

stopped, the chamber Is vented with nitrogen, and the wafer removed.

This process yields excellent replication of the etch mask openings.

In fact, due to the nature of the reactive ion plasma and the metal mask,

the line openings etched in the silicon nitride are typically a few tenths

mil smaller than the line openings in the steel mask. The masks used for

the experiments have approximately 5 mil line openings.

This process can be performed without degrading solar cell electrical

characteristics. This has been shown by direct comparison of solar cells

whose only difference in processing was the ohmic patterning step.. Plasma

patterned cells have been compared with those patterned by conventional

photolithographic techniques using photoresist to protect against buffered

HF etching. Both patterning processes can yield high quality solar cells.
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This must imply that even though the CF4-02 gas mixture Is capable of etching

silicon as well as silicon nitride, any silicon etching which occurs while

clearing (patterning) the silicon nitride is not significant.

This implication is confirmed by the etch rate data presented in figure S.

These data were from a series of samples run at the same pressure, and flow rate as

the baseline process. (Some electrode heating during the runs was possible in

these cases, however.) Both etch time and RF power were varied. Bare silicon

wafers were protected with photoresist so as to expose silicon areas in the shape

of a metal grid pattern. After plasma etching, etch depths into the silicon were

measured with a mechanical instrument similar to a profilometer. While it is

obvious from the data in Figure 8 that the etching process is complex, silicon

etching is not a serious problem. For example, silicon etch rates at 100 W RF

power are small enough so that even for the case of 100% overetching (etching

to clear Si 3N4 in 4 min., then etching Si for an additional 4 min.), only O.OS u

of silicon surface would be lost. Note that these data imply that the etch rates

for Si and for S1 3N4 were nearly equal for this particular process. Of course,

such a large amount of overetching is not required ire the actual process.

3.2.1.2	 ADVANCED PROCESSES

Advanced solar cell structures will probably have patterned both front

and back metallization contacts. For such cell geometries, it is desirable to pattern

both sides of the cell simultaneously in order to minimize the number of proces.

steps and to maximize equipment throughput. in this way, front and back

symmetry of the patterns can be readily achieved without the necessity of

realignment to an existing pattern on one side.

Advancements in ion-enhanced plasma etching of the silicon nitride layer

have been demonstrated. These advancements are the result of modifications in

equipment configuration.
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The baseline equipment configuration, figure 9A, has the cell on the RF

powered electrode with the vacuum chamber walls as the ground electrode. This

equipment has been mofifled to have a grounded electrode parallel to the power

electrode, figure 9B. This Is similar to the arrangement used for RF sputter

etching, and in general Increases the plasma potential and ion density (3).

As expected, an increase in etch rate was observed; unexpectedly (but fortunately)

a significen improvement in etch anisotropy also occurred. This etch anisotropy

is evidenced by better dimensional replication of the mask in the nitride

pattern.

To evaluate the improved etch anisotropy, a metal mask was placed over the

cell separated from the surface by a spacer ring as in figure 10. The

nitride was then etched with plasma conditions similar to these utilit ties for

the baseline process. Various thicknesses of spacers were used with resulting

separations of 0.005 to 0.0140 inches. The maximum line definition lost ;width

increase) was 1.0% for the 0.020 Inch separation. To obtain such results, an

Ion-enhanced etching mechanism (reactive ion etching) must predominate the

process. As illustrated in Figure 11, random gas motion of unaccelerated ions

and neutral species would cause etched lines several times larger than the mask

opening, oven without surface migration of absorbed neutral and ionic species.

The accolerated ions, as assumed, would have paths essentially normal to

the power electrode and possibly have a fousing effect at the narrow line

opening in -the mask. This effect has been observed in various ion sources (4),

and could explain the etched lines being narrower than the mask openings when the

mask is in direct contact with the surface,

(3) J. L. Vossen, Journal of the Electrochemical Society, Vol. 126, pg. 319
(February 1979).

(4) H. R. Kaufman, J. M. E. Harper, and J. J. Cuomo, Journal of Vacuum Science
and Technology, Vol. 16, pg. 893 (May/June 1979).
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FIGURE 9

PLASMA ETCH EQUIPMENT CONFIGURATIONS (A) BASELINE
PROCESS, (B) PARALLEL PLATE MODIFICATION.
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Of major significance Is the fact that the required pattern can be

etched without intimate contact between the mask and cell surface. This Implies

that a double sided process is feasible and may be easily Implimented. Also,

the process can now be applied successfully to sheet substrates which may be

less flat (and more fragile) than as-sawed, single crystal material.

The plasma reactor was further modified by adding another grounded

electrode, and changing the power electrode to allow the substrate to be

held between -two metal masks, as illustrated in Figure 12. Using this new

configuration, the silicon nitride layer is etched in CF  with 8.5% 0 2 , at 100

watts of RF power, and at a pressure of 0.1 Torr. The front side of the cell

Is placed face down on the bottom mask to obtain better resolution for the

front pattern, while the back side has an approximately 0.010 inch spacing between

the substrate and mask. The results were excellent, generating simultaneous

patterns with sharp geometries equal to those previously generated one

side at a 'time. Solar calls with efficiencies in excess of 14% (AM1) were

fabric,-a1-ed using these simultaneously formed front and back ohmic patterns.

The masks used during these experiments were thicker than those used in the

reported single side baseline process, i.e. 12 mils versus about 5 mils,.

Thicker masks are required to support the substrate, but have a limitation

in the Line widths which can be formed using common etching techniques. Line-

width on the 12 mil masks are 7 - 8 mils. At present this represents a

major requirement in developing of a production-ready process, and efforts

must be directed toward mask development technology.

A constraint of the equipment design used to demonstrate the advanced

process was the low gas flow rate, when operating in the ion-enhanced pressure

region near 0.1 Torr. This flow rate was difficult to control, causing

some process control variations. Accordingly, the equipment required

additional changes to Increase vacuum pumping speed. After some modification,
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an improvement was noted in malntaing stable gas flows In the 3 cm3/minute

range. However, this was still not totally adequate for a reproducible,

efficient process.

Another limitation of that equipment is what can be generically called

"wall effects". These include both vacuum variations and ion recombination

effects due to the chamber's size and electrical interactions, since the

chamber was itself an electrode at ground potential. "Wall effects" of that

equipment physically limit the size of substrates that can be uniformily etched,

the usable pressure range, and the etch rate. These effects were reduced

by utilizing a more suitable equipment configuration; to this end, a unit

designed as a parallel-plate development system was obtained as a replacement

for the unit used for experiments to date. This unit is shown schematically in

Figure 13.

The new unit uses a glass bell jar for the vacuum chamber; this eliminates

the conductive ground surface near the electrodes. It also has a triple

electrode configuration - an RF power electrode between two ground electrode plates,

with cas inlets in all three.. This is easily adaptable to simultaneous front and

back pattern etching. The system's design allows higher pumping speeds of

reactive gasses and a lower residual gas level of 10 -4 Torr. Also, larger

rectangular electrodes, 4 t1 x 10 11 , offer the capability of handling ribbon

substrates

Tests were initiated in this new system. The results seemed more

+	 consistent with some improvement in uniformity. However, somewhat lower

etch rates were experienced due to lower power density from increased

electrode size.
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After preliminary evaluation of the new plasma equipment, however, a

major and persisten. problem developed. There is a mechanism whereby polymerization

of the fluorocarbon ions competes with the etching silicon nitride. The polymeriza-

tion effect varies from a slight reduction in the nitride etch rate to causing

a secondary etch mechanism under the etch mask in areas which should not be

etched. Under certain conditions, pol^jmerization of the reactant gases totally

replaced all etching, Altho^... j h it had been observed on occasion in the

previous equipment, it is more prevalent at the lower pre<:sures. The gas

phase effects are also easier to observe with the glass bell chamber. The

polymerization phenomenon is believed to be related to the low flow rate

or long residence time of the gases in the RF field and to the selection of

reactor materials. increasing the pumping conductance of the vacuum system and

increasing the oxygen concentration significantly reduced the polymerization.

Also, the electrode spacing was increased to reduce the confinement of the

plasma dark space sheath at the lower pressure required for Ion enhanced

etching. Plasma confinement increases the reaction of the plasma with the

electrode surfaces and concentrates the field within the plasma resulting In

increased polymerization. These steps basically eliminated the gas phase reaction

but nickel and molybdenum components such as used for etch masks were found

to also cause surface polymerization. It is thought that since nickel and

molybdenum form volatile fluorides that these may act to initiate poiymer'ization.

However aluminum and copper form nonvolatile fluorides and do not promote

Fluorocarbon polymerization. A recent published study (5) verifies these

assumptions and giv9s a qualitative theory of the polymerization mechanism

that is found in low-pressure, long-residence-time plasma systems used for

ion enhanced etching. Polymerization no longer presents a significant control

problem.

I
(5) J. W. Coburn and Eric Kay, "Some Chemical Aspect of Fluorocarbon Plasma

Etching of Silicon and its Compounds", IBM Journal of Research and Develop-

ment, Vol 23, No. 1, January 1979.
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Mechanically masked plasma patterning of silicon nitride layers on

silicon solar cell substrates can now be considered to be a well established

process. What can be considered fine IInewidths for solar cell processing, i.e.,

1 mil, has been demonstrated. Photomicrographs of specific etched examples are

shown In Figures 14 through 16. Figure 14 is a photomicrograph of an exposed

silicon grid line etched in silicon nitride AR film on a polished silicon

surface. This is a portion of the preohmic plating mask routinely etched on

3 inch solar cells. Figure 15 is a photo of a sharp 1 mil line delineated using

a resolution test pattern mask. An example of the resolution on textured

silicon surface is shown in figure 16.

It must be noted that while the process is proven, extensive efforts are

still required in both mask fabrication techniques and in automated equipment

design.

3.2.2	 PLASMA SILICON ETCHING

The sawing of large silicon cyrstals or ingots into thin substrates leaves

the surface extensively damaged. This damage consists of chips, deep

microcracks, and dislocation clusters. Recently, (6) the damage resulting

from a Hamco ID saw has been described a5 1 	 2 Um chips with large microcracks

extending 10 to 15 um below the surface. A somewhat thinner damage layer

of 5 to 7 pm has been observed with Motorola's wire saw technique (7). A

solar cell cannot be fabricated directly in such a loose, fractured surface

layer. Usually a considerable amount of material is removed (20 - 30 Um)

before fabrication. Even though the texture etch processes used in the Motorola

(6) T. S. Kalan, K. K. Shih, J. A. Van Vechten, and W. A. Westdorp, "Effect
of Lubricant Environments on Saw Damage in Si Wafers," Journal of
Electrochemical Society, Vol. 127, June 1980.

(7) B. L. Sopori, "A Rapid Non-Destructive Technique for Monitoring Polishing
Damage in Semiconductor, Wafers," To be published in Journal of Applied
Physics: Doe Contract No. AC-02-79ET-23104.
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FIGURE 14: PHOTOMICROGRAPH OF 5 MIL ETCHED

GRID LINE AT 110X.
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FIGURE 15: PHOTOMICROGRAPH OF A 1 MIL ETCHED GRID

LINE AT 430x.

0
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IGURE 16: PHOTOMICROGRAPH OF A 6 MiL ETCHED GRID

LINE ON TEXTURED SURFACE AT 110X.

42



sequence removes a considerable amount of silicon, most of the worst damaged

Layer must still be removed. If not removed, the damaged layer can result in

texture non-uniformities in peak heights, increases the time required to obtain

desired texturing and effects etch bath control and Life. More importantly, some

electrical degradation may be contributad to not removing some saw damage before

texture etching.

Plasma chemical etching of silicon can be divided into two major

processing categories whose different properties are determined by the equipment

configuration. These are a volume loading process and a surface Goading process.

The volume loading process uses a barrel type reactor in which the plasma is

formed around the chamber wail and the etchant species diffuse Into the

substrates at the core. Thus, the silicon is etched by a gas containing

active species, usually atomic fluorine. In the surface loading process,

the substrates lie or, one of two electrodes between which a plasma g low is

generated. This provides etching from active atomic species and ions but only

on the exposed surface. (Both processes were investigated to determine

operational and cost effectiveness for plasma etching of silicon saw damage.)

The barrel type reactor was evaluated first since its large batch

substrate processing and relatively low equipment cost made it a likely

cost effective choice. The equipment used was a Tegal Model 421, typical of

the type used extensively in semiconductor processing. Using CF  and 02 reactant

gas mixture, etch rates of over 3,000 R/min. were attainable. However, attempting

to remove silicon from both sides of a large number of substrates greatly

reduced the achievable etch rate due to the volume loading effects on the

reactant species concentration. As the silicon area increases the etch rate

decreases since the species production rate remains fixed with constant pressure

and RF power. There is a finite limit of reactant species generation due to the
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power limi°* of the system design, and reactant species lifetime decreases as

the pressure is increased. Besides reducing the etch rate, the closer

substrate spacing with large batch carriers introduced etch non-uniformity

across the substrates. Since the reactant gas diffuses from the edge to the

center of the substrate, there can be a substantial decrease In etch rate

near the center due again to reactant depletion. This can be improved by
a

Increasing the spacing (reduced loading) and by lowering the pressure. An

additional observation of concern was that the plasma chemistry preferentially

etches the larger microcracks as shown in the SEDI micrographs in Figure 17.

These can adversely effect the texture etch peak height uniformity or cause

additional problems even if a texture etch is not used.

The maximum etch rates obtained were 600 t6 800 9/min. using a reduced

wafer loading of 50	 3" wafers at a pressure of slightly Less than 1 Torr and

250 watts of RF power. This is higher than has been reported for integrated

circuit etching applications. This improvement was due to vacuum pumping

changes and increased temperature. This rate is far too slow to make this

technique economical for bulk silicon etching. For example, at 8009/min., It

requires over 60 minutes to etch the minimum of 5 pm on 50 	 3" wafers. The

volume flow nature of this process also requires considerable amounts of carbon

tetrafluoride gas.

The parallel plate or planar reactor configuration was evaluated next. This

process is surface area dependent since the substrates lie on one of the RF

electrode plates. There is not the etch rate reduction due to reactant species

due to recombination before reaching the substrates since they are in the

plasma discharge. Both neutral and ionic species can effect the etching

rate within the discharge. The etch rate is therefore much higher in the planar

reactor. Gas usage is more efficient and the equipment Is more easily auto-

mated than the barrel configuration.

M
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The equipment used in the evaluation was a modified barrel system

equipped with parallel plate electrodes which was also used for the Initial

plasma patterning work. The etch rates were determined by weight loss and

substrate thickness measurement. inch rates of 5,000 R/min. were obtained at 1

Torr and 300 watts of RF power. Using the small electrode, there was good etch

uniformity across the substrate. There was, further, no preferential etching

of larger microcracks as seen In the barrel reactor probably because the reaction

mechanism is controlled by surface collisions. in fact, the surface appears to

be very similar to those obtained using wet chemistry etching except for smaller

features.

To evaluate loading effects and operational scale equipment, multiple

wafers were etched on a larger parallel plate reactor. This unit was also

equipped with an atomic fluorine !mission detector. Since silicon etch

rate is determined by atomic fluorine, the emission intensity of the plasma

can be used to optimize the reactor parameters. The Loading effects were found

to be Less complex (two dimensional) and less severe due to reduced wall effects

with this process. The results were very good with etch rates over 1.2 umlmin.

for small axial loading to 0.8 pm/min. for fully loaded conditions. Uniformity

was more than adequate for this process (>5%) with no apparent difficulties.

Consistent etch rates of i ism/min. should be a reasonable performance Limit

using slightly higher power density and recent developments in gas distribution

to compensate for loading effects by several equipment suppliers.

Based on a I um/min. etch rate, this process is of questionable cost-

effectiveness for saw damage removal. Assuming that a 10 um must be removed

to ensure all damage remov *:?, the throughput, equipment cost, and gas

consumption be approximated to cost about 0.75 cents per watt per side.

This Is not competitive with alkaline wet chemical etching to remove a
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comperable thickness. If a greater thickness of damage removal is required,

plasma etching becomes even less attractive. This method does, however, appear

to be cost-effective for removing thin (less than 1.4 um) on direct grown

sheet material such as RTR or EFG ribbons, If this proves to be necessary.

3.2.3	 TEXTURE ETCHING AND BACK SURFACE TRANSMISSION

in the process of wet chemical texture etching, both the front and back

side of the substrate will texture unless an effort is made to mask the back

side with either a dielectric (SiO2 , Si 3N4 ) or a screened wax. This mask

must then be removed before further processing. Plasma texturing, with

mechanical masking of one side, can be envisioned as a technique for texturing

only one side of the substrate. The advantage of texturing the front side

only is that as the light which Is refracted at the textured front surface

reaches a non-textured back, total internal reflection will take place. The

increase in short circuit current that this affords (for a patterned back

cell) must be weighted against that additional processing expense of the

back protection and stripping steps or the cost of plasma texturing.

An experiment was performed to measure the actual amount rf increase

in transmission through Yl wafers which were given wet texturing of both

front and back as compared to only front texturing. In the experiment, a

high efficiency silicon solar cell was used as an optical detector. The

edges of the detector were covered with a mask to prevent stray light or

scattered room light from striking the cell. The experimental wafer was

then placed directly over the detector. An ENH quartzline lamp was then

used as a light source. The geometry of this appratus is shown in Figure 18.

By using a high efficiency silicon solar cell as the detector of Fight
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transmitted through two wafers, one textured front and back and one textured

on the front only, an accurate measure of useful transmitted light

(i.e. .4-90um < X < 1.1Um) can be obtained.

It was found that for 20 mil (500um) thick wafers, the wafer that was

textured front and back transmitted more than 3 (3.24) times the useable

Incident light, but the actual magnitude of the transmission would result

in only 0.175% loss in J SC , compared to a loss of 0.054% for the polished back

case. For the thinner, more practical case of 7.6 (190um) mil wafers, the

ratio of transmitted light is, to first order, the same, but the magnitude is

much larger because, of course, more light remains to be absorbed after 7.6 mil

(190pm) penetration than after 20 mils (500um). Empirically, the loss in

JSC increases from 0.054% (for 20 mil, front textured, back, polished) to

0.18% for 7.6 mil. The loss for the textured front and back increases

from 0.17% (20 mil) to 0.65% (7.6 mil). In all cases, no front or back

metal was on the tes+ wafer, making the observed amount of transmitted light

greater than for an actual cell.

Thus, for the thinner wafer, the much simpler texturing of both sides

of the wafer results in a reduction of J SC of 0.65%. Since such a small change

in J SC will have no measurable effect on V 
0 

or the fill factor, the overall

reduction in conversion efficiency will be by the same factor, essentially

reducing a 15.00% cell to a 14.90% cell. At a cost of $0.70/watt, this

amounts to an increase in cost of 0.46 cents/watt. The cost of protecting the

back side from texturing, either by masking or by plasma texturing must not

exceed this cost.

The above analysis is a worst case condition. This is because of

two assumptions made, namely; all of the light that is totally internally

reflected by the one sided textured sample will be fully absorbed; and that none
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of the light transmitted through the two sided textured sample is reflected

back into the cell by the back of the module.

The second assumption deserves further comment. Because the back side

has a patterned metallization, a patterned Si 3N4 coating is present as a

plating mask. The Si 3N4 thickness is the same as that on the front, textured

surface where it serves as an antireflective coating. It will serve exactly

the same way for light which, having been transmitted through the cell, is

now redirected onto the back surface from any reflective backing utilized in the

module. This implies that the above discussion of losses is overestimated,

and that the actual reduction In efficiency due to front and back texturing may

be negligible once the cell is properly encapsulated.

3.2.4	 PLASMA TEXTURE ETCHING	 .

Texture-etched like surfaces on silicon have been achieved in a

conventional plasma etching system. Demonstration Df this process was performed

on ribbon-to-ribbon (RTR) material grown internally at Motorola.

Texture etching of polycrystalline silicon materials occurs readily,

In the case of polycrystalline materials, as in the case of single crystal

wafers, the (111) crystal surfaces are left, forming pyramidial shapes. in

the case of polycrystalline materials, however, these pyramids are not

normal to the surface, as they would be on a (100) single crystal substrate, but are

rotated to one side depending on the orientation of the grain in which they

exist, A SEM photomicrograph of a texture etched RTR sample, etched by

conventional wet chemistry techniques is shown in Figure 19.

In contrast, SEM photomicrographs of a plasma "texture etched" sample

are shown in Figures 20 and 21. These were etched in a CF 4-(12 (8%)

plasma in a barrel type reactor. The total etch time was about 30 minutes.
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The geometricrl shape of the plasma textured surfaces Is not as sharp

as that formed by wet chemistry and can be described more accurately as

an egg-carton type geometry. This shape is extremely attractive as an

effective light trap, but appears to be much more fragile and susceptible

to peak breakage. Further, the geometry may present problems in ion

implantation, perhaps causing locallized shadowing.

in order to achieve the anisotropic etching, the etch conditions were

changed from attempts at plasma etching saw damage removal. The gas flow and

pressure must be reduced to allow a much slower etch rate. These conditions

would be necessary regardless of the reactor geometry or type. It Is concluded,

thus, that the low throughput and high equipment cost preclude the use of

plasma texture etching. Further, based on the discussion in the previous

section, one sided texturing is not critical from a cell (module) efficiency

standpoint.

3.3	 METALLIZATION

At the present time, two techniques for forming metal contact on solar

cells remain potentially viable from both cost and technical considerations:

plating ana printing (silk screening). The plated metal process has now

shown distinct advantages over the printed process.

The Pd 2Si - (Pd)	 Ni -solder metallization system for silicon solar cells

has been developed at Motorola. This system can be considered the baseline system

which all other competing systems must strive to outperform. A full description

of the Pd2S'i-(Pd)-Ni-solder metallization is available in another report (8).

(8) R. A. Pryor, DOE/JPL Report No. 954689-78/4, "Metallization of Large
Silicon Wafers, Final Report for JPL Contract No. 954689 (1978).
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Several developments in plated metallization were studied simultaneously

for this contract. Using the palladium-nickel-solder metal system developed

under JPL Contract No. 954689 as a baseline process, new procedures were

generated to substitute copper for solder as the conductive layer and to

eliminate the use of the relatively thick and expensive electroiess palladium

for the silicon contact layer. The thin Immersion palladium, however, may be

retained.

3.3.1	 NICKEL PLATING

In the past, experiments attempting to plate electroiess nickel directly

to silicon using the usual ammonia-based nickel chloride bath have yielded

inconsistent, and therefore unsuccessful, results. 	 In some instances,

excellent bond strength and contact resistance would be obtained, while in some

others, contact strength would be totally inadequate. The primary reason for

inconsistent contact performance was a tendency for the plating bath to

produce an oxide interface layer on the silicon surface faster than it produced a

plated nickel layer. This oxide interfacial layer prevented the effective (and

controllable) nickel silicide formation needed for adherence.

The interfacial oxide problem was solved in the baseline (PNS) process by

using immersion and electroiess plated palladium layers, but the electroiess

palladium layer contributes a significant cost to the process. Experiment:

have been initiated to eliminate the electroiess palladium plating step

in the PNS process,• using only an immersion palladium silicon surface

preparation followed by the electroiess nickel deposition. While this has been

readily performed with the original nickel bath, it has not yet resulted in

consistently satisfactory nickel layer adhesion. It seems that the same

oxidizing effects may be present whether the specified nickel solution is
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used on bare silicon or on silicon sparsely coated with palladium from an

immersion solution.

The direct use of nickel and nickel-silicide ohmic contact layers have

been re-evaluated. In fact, it has been discovered that consistently

strong nickel contacts can be obtained after heat treatment of nickel layers

formed directly on the silicon surface by electroplating. Apparently this

Is possible because of the differences between the behavior of the alkaline

eiectroless nickel bath specified in the PNS process and the acid electrolytic

nickel bath used in the present experiments. The nickel layer produced by the

alkaline electroless bath is the nickel-phosphorus mixture, containing a few percent

phosphorus, while the layer produced by the acid electrolytic bath is essentially

pure Mickel with no component of phosphorus. Moreover, in directly plating the

nickel layer onto silicon with the electrolytic nickel process, there appears to

be no tendency to form an interfacial oxide. Thus, the nickel is in Intimate

contact with the silicon surface., The result is to allow the controllable

formation of a very adherent nickel-silicide layer (N 2Sl) at very low temperatures

(250 - 3000C) and in time intervals of 15 - 60 minutes.

Experiments were conducted using a commercial electrolytic nickel bath.

A formulation based on nickel sulfamate was chosen be;°ause this chemistry is

widely recognized as providing nickel deposit's with very low internal stress.

Low stress is important for building reasonable deposit thickness without

generating adhesion problems before nickel silicide formation and for not

imparting stress to the silicon crystal lattice near the junction (which could

degrade current-voltage characteristics of a solar cell).

The electrolytic nickel plating solutions were prepared from nickel

sulfamate solutions manufactured by Allied-Kelite of Des Plaines, Illinois.

Instructions for preparing and using the plating solutions were obtained from

F

56

a



technical data sheets for the "Barrett Sulfamate Nickel Plating Process, Type $N'.

The basic formula for the Barrett SN solution is 76.5 94 of nickel metal in the

form of nickel sulfamate plus 30 g/R of boric acid. The nickel metal content

Is supplied by Barrett Sulfamate Nickel Replensiher Solution, Type SNR-24, which

contains 180 g/t of nickel motal. Other solution additives such as an anode

corrosion chemical (Barrett Additive "A" , 3 g/0 and an anti-pit agent (Barrett

SNAP, 0.4 g/k) may be used (but were not used for most of the experimental studies).

Optimum operating parameters given for the Barrett SN process include a bath

temperature of 490C, solution pH of 4.0, tank voltage between 6 and 12 volts,

and cathode current density between 10 and 20 mA/cm2 . Typical 3 inch diameter

solar cells with patterned front metal and solid back metal have an exposed area

of about 50 cm2 . Therefore, cathode currents of about 0.5 to 1.OA were actually

used.

Experiments with electrolytic nickel were performed with the plating

solution contained in quartz beakers on top of magnetic stirring hotplates. A

sulfur depolarized nickel anode was used. Plating voltage and current were

supplied with a standard regulated power supply, and typical plating times

ranged between 1 and 10 minutes.

It was determined that for at least some solar cell structures, nickel

plating could be initiated directly on the exposed silicon front and back

surfaces with no pretreatment other than a dilute hydrofluoric acid (e.g.,

10:1 H2O:HF or 50:1 H2O:HF) rinse to ensure oxide-free silicon surfaces. In

performing the electrolytic nickel plating process, no tendency to form

oxide interfaces between the silicon and nickel was observed. This is probably

the major reason for 'the excellent adhesion obtained with nickel layers which

have been deposited with this bath (and subsequently heat-treated). Such layers,

after treatments of as little as 15 minutes at 300 0C, have passed the requirement

that vertical pull-test failure occur by silicon substrate fracture. Moreover,
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the process of applying the nickel layer and forming the nickel silicide

contact does not degrade solar cell electrical performance.

There are, however, some precautions to be noted before the successful

production-ready development of electrolytically plated nickel contacts Is

completed. first, the plating process is dependent on solar cell structure

since electrolytic plating performance depends very much on silicon surface

conductivity. Therefore, cells with both a front surface diffusion and a back

surface enhancement will adapt more readily to the electrolytic process

than cells with no back surface layer. Secondly, electrolytic processing requires

electrical contact to the solar cell so that It may be made cathodic. The

proper fixturing required to make effective electrical contact to the bare

silicon of the solar cell, and yet not shadow the cell or rob current from the cell,

is not a trivial design problem and may require a fair amound of engineering

development.

A potential drawback, thus, of electrolytic nickel plating to bare silicon

may be the requirement of careful attention to the fixturing and ,Jigging arrangements

which provide electrical contact to the cathodic solar cell. Because of the

fixturing complexity (especially associated with the electroplating of bare

silicon), It would be desirable to use an electroless nicker bath to form

the silicon contact layer. Thus, a re-evaluation of electroiess nickel solutions

was undertaken..

Electroless nickel solutions routinely used by the semiconductor industry

for plating silicon usually consist of nickel chloride and a sodium hypophosphite

reducing agent in an ammonical bath maintained at proper pH by excess amounts

of ammonium hydroxide. A complexer such as sodium cif^ ,ofe is also used. From past

investigation of electroiess nicker soWtions, it appears that a basic, high

pH solution is required to effectively plate silicon. Therefore, in

f'_5! sr IPA	 rl ^ 3l
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re-evaluating the direct use of elactruless nickel, chemistries were considered

which were alkaline in nature but which used substantially different solution

components. Baths using nickel sulfate rather than nickel chloride were

prepared, The amount of ammonium hydroxide required for pH control was reduced.

Sodium pyrophosphate was used as a comnlexing agent. Roth sodium hypophosphite

and dimethylamine borane were considered for reducing agents. In general,

no ;substantial difference was noted between the phosphorus reducing agent and the

boron reducing agent with respect to plating silicon solar cells. Hence

the less expensive sodium hypophosphite was chosen for further experimentation.

The formula used for further experiments is given in Table 6.

The performance of this electroless nickel chemistry has been studied by

Schwartz (9) and Feldstein (10) for applications other than silicon plating.

However, this solution has proven to give excellent performance when used at

moderate temperatures (5000 '7100 	 to plate silicon. Direct platin g can

be initiated In a matter of seconds on clean, heavily or lightly doped n-type

silicon, or on lightly doped p-type silicon. Some difficulty which has not yet

been resolved occurs when trying to plate heavily doped p-type silicon, such

as a BSF l ayer for an n+pp4• solar cell.

To circumvent such difficulties, and to introduce a uniform, repetitive

plating situation, a surface pre-treatment has been employed to prepare the p+

and n+ silicon surfaces for simultaneous nickel plating. The pre-treatment

consists of a short (2-4 min.) immersion ir+ a dilute palladium chloride

solution which deposits a very thin and adherent palladium film on all

exposed silicon, This film need not be continuous but is dense enough to

effectively catalyze the subsequent electroless nickel deposition. The

(9) M. Schwartz, Proc. Am. Flectro^lat, , Soc., 47, 176 (1969).

(10) N. Feldstein, RCA Review, 31, (2), 317 (1970).
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TABLE 6

ELEC'ROLESS NICKEL FORMULATION USING NICKEL SULFATE

REAGENT	 CONCENTRATION

Nickel Sulfate (NISOa'6H2O)	 25 g/t

"	 Sodium Pyrophosphate (Na 4 P20
7

-IOH20)	 50 g/Z

Ammonium Hydroxide (58% NH4OH) 	 22 ml/h

Sodium Hypophosphite (NaH2PO2 •H20)	 25 g/R
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Immersion palladium solution has been described in other Motorola reports

and consists of palladium chloride in a dilute, aqueous ammonium fluoride solution.

After palladium sensitization and water rinsing, the solar cell is

plated in the sulfate electroless nickel solution for about 4 minutes. This

is sufficient to obtain a nickel contact layer on the order of 5000 ^ thick.

With this electroless nickel chemistry, no tendancy to oxidize the

silicon surface has ever been observed. The result is a nicker layer (with a

{	 very small percentage of palladium) which is in intimate contact with the

silicon surface. This assertion is born out by tho fact that very low

temperatures (25000) are sufficient to react the nickel-silicon interface

to form nickel silicide (Ni 2Si), thus obtaining strong metal contact adherence.

Such rapid silicide formation at low temperatures is in agreement with studies

found in the technical literature where vacuum deposited nickel Layers are formed

on freshly cleaned silicon surfaces. As much as 400 - 500 ^ of nickel

silicide.can be expected after heat treatment at 2500C for 60 minutes (11).

3.3.2	 'OPPER AS AN ECONOMICAL CONDUCTOR LAYER

The minimum cost achievable for any metallization system is Limited by the

cost of component materials. All printed metallization systems which have been

satisfactorily utilized with solar cell structures (for contact to the

shallow junction areas) are based on silver as the primary conductor. No

printable base metal system has been reported to be satisfactory for

utilization on solar cells. The Motorola plated metal system, discussed above,

utilizes solder as the primary conductor. While soldor can be broadly classed

as a base-metal, it is relatively expensive. A conductor layer material such as

copper would be much cheaper.

(11) K. N. Tu, W. K. Chu, and J. W. Mayer, Thin Solid Films, 25, 403 (1975).
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Some pertinent properties of potential conductor layer materials are

presented in Table 7. Two important observations can be made. First, the

conductivities of silver and copper are comparable, while solder is a relatively

poor conductor. Second, in order to achieve a given conductivity for any given

conductor geometry, 11% more silver, and over 800% more solder, (by weight),

would he required compared to copper.

The cost of metals varies significantly as a function of time in a manner

determined more by supply and demand factors than by inflation. For the basis

of this discussion, the prices for the three metals were Identified on March 29, 1979

and are presented in Table 8. On a weight basis, copper is significantly cheaper

than solder and les", than 1% of the cost of silver.

When the cost per pound of a metal is correlated with the weight

requirement for a unit conductivity, the cost of a metal as a conductor can be

determined. Utilizing the 3-29-79 prices, solder is about 40 times as expensive

as copper, while silver is about 115 times as expensive as copper. During 1979 and

1980, metals prices varied wildly. Silver prices rose by an order of magnitude,

while copper prices rose less than 50%. Subsequently, prices have decreased,

but copper has held even greater cost advantages over silver and solder than

Indicated by the prices above. On a cost basis, thus, copper is er4tremely

attractive as the primary conductor metal on solar cells.

3.3.3	 COPPER-SILICON INTERDIFFUSION

Any solar cell metallization for terrestrial applications must. in

addition to being sufficiently economical, provide both excellent electrical

performance and ensure reliability under actual operating conditions. Numerous

candidates exist which will provide suitable electrical performance, but which

fail the reliability criterion. 	 In order to perform reliably, the solar cell
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TABLE 7

COMPARISON OF SELECTED PROPERTIES OF METAL CONDUCTOR LAYERS

SOLDER
(60SN-40PB)	 COPPER

RESISTIVITY
(Micro Ohm-cm)	 14.5	 1.673

DENSITY  3
(g/cm )	 8.53	 8.96

o-

RELATIVE WEIGHT PER UNITr

i
CONDUCTIVITY	 8.26	 1.0

i

r

SILVER

1.59

10.49

1.11



TABLE 8

COST* OF CONDUCTOR METALS ON MARCH 29, 1979

SOLDER**
(60SN-4OP5)	 COPPER

COST PER POUND	 4.67	 1.00

SILVER

104.22

*BASED ON PURE METAL COMPONENT COSTS

**DOES NOT INCLUDE ALLOY FORMATION COSTS



metallization must both maintain excellent adherence to the solar cell and, at

the same time, not contribute to degradation of the electrical characteristics.

A severe criterion would be that the only satisfactory adherence test

of a metallization system for solar cells is a mechanical pull-test which

shows no separation of metal layers and which guarantees that separation

of the metal from the cell is accomplished by silicon fracture. (Motorola's

palladium silicide-nickel-solder metallization system satisfies this

criterion.)

During operation, for a minimum of a 20 year life, the metallization

must not contribute to a significant Foss in output power from the solar cells.

Such a loss could occur either from an increased series resistance, due to

such phoenomenona as corrosion or metal migration, or from degradation of the

silicon cell behavior, such as could occur by diffusion of the metal

into the silicon. Diffusion of metal into the silicon could cause degradation

of minority carrier lifetime in the silicon, decreasing cell efficiency. From

all tests performed to date, the Pd 2Si-(Pd)-Ni-solder system appears suitable

from these standpoints.

The substitution of copper for solder as the primary conductor layer in the

;metallization system would result in substantial materials cost savings. Substitution

of copper for solder should have no impact on metal adhesion, but copper can have a

degrading effect on cell electrical performance if it accumulates near the
p-n junction.

The diffusion of copper in silicon is extremely rapid at low temperatures.
r

While copper present in silicon before device processing can be gettered or

precipitated (12) copper penetration following any high temperature processing,

(12) A. M. Salama, "The Effects of Copper and Titanium on Silicon Solar Cells,"
The Conference REdord of the Thirteenth IEEE Photovoltaic Specialists
Conference	 1978, p. 496, 1978.

w
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such as from cell metallization, can significantly degrade cell efficiency (13).

Diffusion kinetics can generally be described by an Arrhenius type

relation,	 - Q

D=D e RT0

where D is the diffusion coefficient, Do is the pro-exponential or frequency

factor, Q is the activation energy, T is absolute temperature, and R is the

gas constant. The penetration of a limited amount of impurity into another

species at one temperature can be approximated by a gaussian distribution

- X2

C = C e nDt0

where C is the concentration of the impurity at distance x, C o is the surface

concentration, D is the diffusion coefficient, t is the time of the diffusion,

and n is a constant determined by the diffusion geometry. On the other hand,

if the source of impurity is infinite, penetration is described by

C = Co erf nDt

A measure of impurity penetration for either case can be taken as the

distance Dt. Further, at a distance of 10 Dt, vanishingly small amounts

of the impurity will be found. A suitable diffusion barrier, thus, has a thick-

ness of at least 10 /Ft.

in operation, the solar cell will be subjected only to maximum temperatures

near 1000C. Unfortunately, no diffusion data exist for copper in silicon for

this temperature range, requiring extrapolation from higher temperature data.

Such an extrapolation, however, does not appear unreasonable.

(13) T. Daud and K. M. Koliwad, "Effect of Copper impurity on Polycrystalline
Silicon Solar Cells," ibid, p. 503.
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Diffusion of copper in silicon has been studied for the temperature range Of

4000C (14). These data are approximately reproduced in Figure 22 and extrapolated
h

to the lower temperatures of interest. From this figure, diffusion coefficients

for copper in silicon in the range of 500C to 12000 have been determined and are

shown in Table 9. These data have been utilized to calculate the distance Dt

for copper in silicon at these temperatures for a time of 20 years, Table 10

for copper in silicon at these temperatures for a time of 20 years, Table 10.

These distances are on the order of 1 cm in this time-frame, a distance which

virtually ensures copper throughout a silicon solar cell operating for 20 years.

Thus, cell degradation is virtually ensured during the required operating life if

copper is allowed direct contact to silicon.

it is apparent, thus, that a barrier to copper diffusion into silicon is

required to ensure cell reliability. Nickel appears to be ideal for this

purpose. Diffusion data for copper and nickel have been compiled (15), and

representative data are presented in Table 11. Again, extrapolation of high

temperature diffusion data is required. Both copper and nickel exhibit complete

mutual solid solubility, and both have face-centered-cubic crystal structures.

Extrapolation of diffusion data for face-centered-cubic materials over large

temperature ranges has proven satisfactory due to the extreme dominance of

diffusion by a single vacancy mechanism in these materials. The extrapolation

is primarily dependent upon the accuracy of the high temperature data.

The diffusion data for copper and nickel, shown in Table 11, are

reasonably self-consistent. There is, however, sufficient scatter to make

precise extrapolations unreliable. Precise diffusion distances are not

(14) R. M. Hall, et. al., Final Report, AFCRL Report 62-533, Contract AF 19
(604)-6623, May, 1962, as quoted in Fundamentals of Silicon Integrated
Device Technology, Volume 1, Oxidation, Diffusion, and E ip taxy, Edited
by R. M. Burger and R. P. Donovan, p. 235, 1967.

(15) John Askill, Tracer DiffusionData for Metals, Alloys, and Simple
Oxides, 1979.
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TABLE 9

EXTRAPOLATED DIFFUSION DATA FOR COPPED IN SILICON (14)

TEMPERATURE
	

DIFFUSION COEFFICIENT

T (°C)
	

D (cm 2/sec)

	

50
	

3.0 x 10-10

	

SO
	

1.35 x 10-9

	

100
	

3.15 x 10-9

	

120
	

6.7 x 10-9
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TABLE 10

PENETRATION OF COPPER IN SILICON FOR A PERIOD OF 20 YEARS

TEMPERATURE	 DISTANCE

T ( OC)	 ADT (cm)

	50	 0.44

	

so	 0.92

	

100	 1.4

	

120	 2.1

41
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necessary to determine the suitability of nickel as a diffusion barrier for

copper; a general range is satisfactory. Accordingly, typical data, rather

than specific high accuracy data, will be utilized.

Typical data for diffusion of copper into nickel and nickel rich alloys

of copper and nickel can be approximated from the data in Table 11. For this

purpose, values have been chosen as follows:

Q 60 K cal/g. atom

D
0
	1.5 cm /sec.

Utilizing these numbers, values for diffusion coefficients, D. and diffusion

distances, Ot, have been calculated, Table 12. From these calculations, it

can be seen that Dt is vanishingly small at 1000C. If 20 years storage

occurred at 30000, /D--t would be 10-7 cm or 10-3 micrometer. This means that

at 300°C, 1Q D would be only 100 angstroms in 20 years. Nickel is, thus, an

extremely effective diffusion barrier to copper. If processing interconnection

or encapsulation requires times as long as 30 minutes at a temperature near

300oC, the nickel is still an extremely effective barrier. Copper substitution

for solder in the Motorola plated metal system can be both technically and

economically possible.

3.3.4	 COPPER PLATING

Copper plating is a widely utilized technology. Adaptation to plating

of copper on solar cells, however, required development. Due to the

requirement of a nickel barrier to copper diffusion into silicon, plating of

copper on sonar cells is realy always prating of copper on nickel.

In addition to being necessary as a barrier to copper, nicked serves an

additional function for copper plating of solar cell metallizations. The
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TABLE 12

CALCULATED DIFFUSION DATA FOR COPPER INTO NICKEL,
UTILIZING ASSUMED VALUES OF Q x 60 k cal/g.atpm AND

0a	1.5 cm /sac

t	 20 years

T (°C) D (cm 2/sac) rot- (cm)

100 7.8 x 10
-36 7 x 1014

200 2.2 x 1028 3.7 x 1010

300 1.6 x 10^23 1 x 10-7

t	 30 min

300 1.6 x 10-23 1.7 x 10-10
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nickel layer increases surface conductivity of the cell contact areas, so that,

once a nickel layer is present, even though It has only moderate conductivity

itself, It expedites the subsequent uniform electroplating of additional layers

of metal. Major requirements for obtaining a satisfactory copper layer are

design of the fixturing for making electrical contact to the cell while plating,

and the choice of the electrolytic copper plating solution chemistry,

In preliminary experiments, electrical connections to the external power

supply (providing electrolytic bias) for copper plating were made in the same

fashion as those described for electrolytic nickel plating. That is, fixturing

was employed which was as simple as an alligator clip, or as elaborate as speclaLly

constructed molders consisting of copper rings and contacts mounted in teflon

handles. Of course, making electrical contact to the nickel for copper plating

is much easier than making contact to the silicon to plate the nickel layer. The

nickei layer guarantees more uniform current distribution across the surface of the

cell and hence more uniform plating. In addition, the plating bath contact

Itself is more consistent because it is metal (fixture) to metal (solar cell nickel

layer) rather than metal to sliicon. Optimization of a plating contact

fixture has not yet been attempted but should be a straightforward exercise in

engineering design.

Choice of an electrolytic copper plating solution 1s less obvious.	 Initial

copper plating experiments utilized a cyanide solution, such as for 'the

Lea-Ronal* Q-Level Capper Plating Process. Such solutions are known to

provide highly efficient copper depositions with good throwing power.

Throwing power is a measure of the degree of uniformity with which medal Is

deposited on an irregularly shaped electrode. By providing good throwing power

(uniformity of deposit), effects of the actual electrical contact fixturing, and

position of the cell in the plating tank with respect to the anode, are subordinated.

*Lea-Ronal Inc., Freeport, New York
	

11520

r
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There are, however, several difficulties with cyanide copper processes.

One immediate problem Is the safety requirement of a cyanide plating hood and

drain which are separate from all other acid facilities. This means that the

plating 'tanks and rinse baths must be separate from any pre-plating, acid

cleaning facilities or any pre-copper plating solutions such as acid

electrolytic nickel plating baths. Another problem with cyanide copper

plated layers is the inherently high internal stress in the metal layer.

Of the four widely used types of electrolytic copper solutions (-sulfate,

fluoborate, pyrophosphate, and cyanide), the cyanide solutions deposit layers

with significantly more internal stress. Such stress can promote future

delamination of plated copper layers as well as impart strain to the silicon

lattice in the vicinity of the metallurgical p-n junction, and thus introduce

fill factor degradations.

To circumvent cyanide problems, subsequent experiments were initiated

with acid copper sulfate solutions. The first tests were made using the

Lea-Ronal hopper Gleam PC bath which is advertised to provide a bright

d,actile copper deposit particularly suited to the needs of the printed circuit

industry. This bath consists of copper sulfate (8-12 oz. gal.), sulfuric acid

(22-28 oz./gal.), chloride ion (30-60 ppm), and a proprietary brightener (Lea-Ronal

Copper Gleam PC, 0.4 - 0.6% vol.). The operating temperature range for this

bath is 70 - 90°F. It was used at room temperature (within this range),

proving successful in that it was capable of plating to the nickel layer on the

solar cell, and of being operated in the same hood along side the electrolytic

nickel plating solution.

AnticipatingAnticipating that it may be desirable to reduce internal stress to a

minimum in thickly plated copper layers, experiments were initiated to study

I

OF P002	 to , A:^ uJ
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low stress copper plating solutions. An excellent refernece (16) was

found which gives detailed measurements of the properties, such as stress,

of deposits from numerous copper solutions. Two low stress copper suitafe/

sulturic acid solutions suggested by (16) have been evaluated. Two formulas
i

are listed  i n Table 13.

Formula 1 provides a plating bath which has low internal tensile stress.

Formula 2 provides an internal stress which can range from very low tensile to

low compressive. These simple formulas have proven to give satisfactory

plated copper layers over electroless.nickel base layers. Copper layers as

thick as ten micrometers can be plated in 5 to 10 minutes. Adhesion is excellent

and stress appears to be no problem. Plating can be accomplished at room

temperature.

Formula 2 has been adopted for routine use in evaluating the nickel copper

solar cell metallization system. Results of cell tests will be reported later.

One addition to the copper solution which may prove to be desirable is a

brightening agent. Addition of a brightener can lower stress and improve

ductility. A commercial brightener has been ordered and will be tested.

3.3.5	 CELL FABRICATION STUDIES

To test the ability of a plated nickel layer to serve as a diffusion

barrier for an electroplated copper conductor layer, several heat stress

experiment-OZ have been performed. Various samples have been heated in

nitrogen to temperatures of 3000C and 4000C for times of 15 to 60 minutes.

In all cases, no degradation of solar cell performance was noted when a

plated nickel barrier was present, but catastrophic degradation, usually in

the form of a total electrical shunt of the solar diode, occurred when no

nickel was present.

9

(16) V. A. Lamb, C. E. Johnson, and D. R. Valentine, Journal of the Electrochemical
Society, 117, 2910, 197p.	

9

76



TABLE 13

LOW STRESS ACID COPPER ELECTROPLATING SOLUTION FORMULATIONS

FORMULA 1:

Distilled or Deionized Water, H2O	 to desired volume

Cupric Sulfate, CuSO4 .5H2O	 87 g/z

Sulfuric Acid, H2SO4	14 ml/k

FORMULA 2

Distilled or Deionized Water, H2O	 to desired volume

`	 Cupric Sulfate, CuSO4 .5H2O	 187 g/A

Sulfuric Acid, H2SO4	21 ml/R
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As an example of stress tests, two cells were prepared with electroless

nickel layers approximately 50008 thick, These were nominally three inch dlamete^-

eel's with complete metal coverage on the back aiid about 8% coverage for the

metal grid on the cell front. The front grid pattern was formed by etching

the ohmic pattern into an existing silicon nitride antireflection coating

using photoresist techniques. Thus, the silicon nitride also serves as a

plating mask for the selective plating of electroless nickel.

*	 After nickel deposition the cells were heated at 250 0C in nitrogen for

30 minutes in order to form an adherent contact by nickel silicide formation.

When pull tested, similar cells prepares at the same time as the two test

cells failed only through concoidal fracture of the silicon under the pull

test ta'b.

One of the two test cells was then etched in an aqua regia solution

(3:1 HCI:HNO3) -to remove all of the nickel layer. This cell, and the cell

with nickel still intact, were then both plated with copper in an acid

electrolytic copper solution. The copper was plated to a thickness of about

8 microns.

At this point, current-voltage characteristic curves were measured for both

cells. Measurements were made with no illumination and with simulated

(tungsten quartz-halogen lamps) one sun illumination. 	 In the dark, sufficient

data were taken to plot the logarithmic current versus voltage curves.

These curves conveniently display the behavior of low-level excess currents

which directly influence solar cell fill factor. Under illumination, the

standard solar cell characteristic curve was plotted to obtain values for

open circuit voltage, short circuit current, efficiency, and fill factor.

Before heat stress, both test devices are excellent solar cells, each with fill

factorsjust exceedi<  ;J%. Both cells were then heated to 300°C for 15 minutes.
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Current-voltage characteristic curves for the two test cells for

measurements taken both before and after heat stress are given in Figures 23 and

24 for the cell with the nickel barrier removed and in Figures 24 and 25 for

the cell with the nickel barrier intact. The results are dramatic. The

cell without the nickel layer is thoroughly destroyed. The cell with the

nickel retains its excellent characteristics.

As indicated in Figure 26, the illuminated characteristic curve remains

unchanges after heat stress for the cell protected with nickel. The only

change occurs for very low level currents, as seen in the log I versus V

curves of Figure 25. In contrast, the log i versus V curve for the cell

with nickel removed, Figure 23, shows an enormous increase in excess current -- so

much so that the cell characteristics are totally dominated by this current.

The effect, as seen in Figure 24, is to lower the cell output voltage to less

than one fourth of its original value.

The failure of the cell without the nickel barrier Layer after ,just 15 minutes

at 3000C is no surprise. It is expected that copper will easily diffuse on the

order of 200 microns through silicon for this level of thermal stress. This

is, in fact, about the same as the wafer thickness (7 mils) used for the

test cells.

The test cell with the nickel barrier layer that suffered no iii effects

after 15 minutes at 3000C was given an additional 45 minutes to effectively equal a

total stress time of 60 minutes, four times longer than the first treatment. As

observed in Figures 25 and 26, the additional time at temperature had no

effect on the solar cell operating characteristic and had only minimal effect

on the diode low level excess current. In fact, the cell fill factor was still

maintained at 80%. Although improbable, the slight changes observed in -the low
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current portions of the log I versus V plots of Figure 25 may be due to very

small and localized pinholes In the nickel layer through which copper has

penetrated. On the other hand, the slight Increases may be due to nickel

Itself diffusing to the Junction in localized areas, may be due to other

N
	

impurities from the plating operation, or may be due to stress.

These results indicate that the plated nickel-copper metallization system is

truly viable as a solar cell metallization system.

3.3.6	 METAL TOP SURFACE PROTECTION

The nickel-cor)par metallization system has the desirable qualities of

high performance and low costa As previously discussed, nickel serves as a good

ohmic contact (through nickel silicide formation) and as a barrier to copper

diffusion. Copper is the best low cost conductor available. It is also

readily solderable in solder reflow interconnection schemes.

Copper, however, may be subject to oxidation during any thermal cycles

at interconnection. Moreover, the amount of copper surface oxidation,

sulfation or other corrosion during solar cell field service will depend on

the extent and type of cell encapsulation. Copper suifation and oxidation are

assumed to be undesirable, since the reacted copper will be less conductive than

pure copper, causing ohmic losses. Such ohmic losses may lead to solar cell

degradation and eventual failure.

There are two ways to prevent copper surface reactions. The possibility of

oxidation during interconnection can be eliminated by choosing the proper soldering

technique, such as soldering under an inert ambient like argon. The

possibility of reaction during field service can be minimized with an

effective encapsulation system. However, there is littis knowledge of the
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effects of 20 years service life on today's encapsulation systems. Therefore,

it would be prudent to seek an extra degree of insurance against copper

degradation.

Additional protection of the copper surface against oxidation can be

provided by using a third metal layer as a protective cap on top of the

nickel-copper metallization.. Such a protective cap could consist of tin,

a nickel-tin alloy, a lead-tin alloy, nickel or nickel compounds, palladium,

gold, chrome, etc. All these layers could minimize or prevent copper

oxidation. Obviously gold or palladium could be very costly and are to

be avoided.

The layer which is most easily achieved is tin. A prctective tin cap can

be formed in a simple immersion tin solution. There are numerous commercial

baths available, all developed to plate tin to copper. A tin layer of reasonable

thickness, say 50 microinches (1.25 micrometers) will provide excellent

corrosion protection and maintain surface solderability. However", there are

some potential disadvantages with tin. Tin is a low melting point metal

(2320C). It's use would preclude any heat stress tests after it was applied

to the copper. Potential stress tests would include, metal sintering or

testing the integrity of the nickel contact copper barrier. Furthermore, if the

entire cell is heated during solder interconnection, the total tin surface may

be melted. The potential danger of melting the tin surface is that the

molten tin will readily dissolve into the copper, forming an alloy and

negating the protective surface coating.

Another potential difficulty with a proective tin Layer as well as with

bare copper itself is that copper can readily dissolve into the solder during

Interconnection. This can be troublesome if fine grid lines are used for the

metal grid pattern and if the conductive coĵ  per is dissolved away just at the
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point where the grid lines Join the buss. This could introduce further ohmic

losses.

The next most easily applied metal cap is probably nickel from an

eiectroless nickel bath. The proper choice of electroless nickel could be

plated directly to the copper surface. Nickel solutions using boron reducing

agents are known to plate copper without any special sensitization. The

small percentage of boron incorporated in such a nickel layer encourages an

additional degree of solderability compared to pure nickel or phosphorus-nickel.

However, minimizing nickel oxidation before solder interconnection remains the

principal concern. Once interconnected, nickel oxidation is self-passivating

and the nickel layer can provide excellent long term protection to the copper.

In addition, a nickel-copper-nickel metallization system should be capable of

withstanding thermal stress without degrading its beneficial properties.. A

protective top layer of nickel would remain virtually unaffected by a

solder interconnection process, since the nickel will not Inter-diffuse with

the copper and since the dissolution rate of nickel Into lead-tin solder is

much slower than any other metal under consideration.

Other possible protective top Layer choices are nickel-tin or read-tin

alloys. These combine some of the individual advantages and disadvantages of

tin and nickel. One processing difference is thai such alloy layers are

formed by electrolytic plating, which requires special Jigging and fixturing.

Whichever metal is chosen as a top layer protectaot, it is believed

important to use such a layer for the additional margin of insurance it provides

toward extending the service life of photovoltaic cells. Many of the

combinations listed above have been investigated during the course of this

contract. Two that have been studied in some detail are tin and nickel. An
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electroless tin solution (Cu Tech ST 240? manufactured by Coppertech, Inc;., of

Allentown, Pennsylvania was used to provide an experimental tin layer. This

proved to be readily solderable, even after weeks of storage. However, the low

temperature melting point problems discussed earlier were evident. Experiments

with nickel top surface layers were performed using an electroless nickel

solution consisting of nickel sulfate, 25 g/t, sodium pyrophosphate, 50 g/k,

ammonium hydroxide, 25 ml/X, and dimethylamine borane, approximately 2 g/t.

The resulting nickel deposit contains on the order of 1% or Less boron. It

has been noted that this composition seems to maintain solderability even after

15 minutes exposure to air at 32500 on a hot plate. This was not the case

for electroless nickel-phosphorus compounds that were studied. The phosphorus-

nickel layers are most difficult to solder after short exposures to elevated

temperatures in air.

In summary, an electroless nickel top surface protective layer over the

copper conductor layer of the solar cell metallization seems to make the right

compromise and provide both processing compatibility and long term protection

when produced with an electroless nickel solution using a boron compound reducing

agent.
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4.0	 CONCLUSIONS

While numerous conclusions can bq drawn from the work performed on this

zontract, those are several significant conclusions which overshadow the

others,

1. The thick electroless palladium layer in the Motorola PNS

metallization system can be eliminated through the use of

suitable nickel plating bath compositions for both electrolytic

a,)d electroless techniques.

2. Copper can be successfully used as the primary conductor layer for

silicon solar cells. Nickel is a suitable silicon contact and

barrier to copper diffusion. Further, electroless nickel, utilizing

a boron compound as the bath reducing agent, provides a good top

surface protection to the capper.

3. Mechanically masked plasma patterning of silicon nitride on a

silicon surface is capable of opening lines with widths of onr mil

(25 pm). Excellent mask reproduction of five mil (1251im) lines

occurs even with spaces as great as ten mils (250 p) between the

the mask and substrate.

4. Plasma etching of think surface layers to remove saw damage or to

perform surface texturing is not cost-effective due to the long etch

times and resulting slow throughput.

Ion implantation using high current unanalyzed beams can be used

to fabricate high quality solar cells. This can significantly reduce

the capital cost of equipment and floor pace required for ion implantation.

A SAMICS analysis of the Motorola process sequence was performed.

Including formation of the initial silicon sheet, ribbon-try-g ibbon (RTR)

req rowth, cell processing, and encapsu?anon, the SAMICS calculations

show a price of $0.6609 $ (1950) /watt (for a 100 megawatt factory)

with an energy payback time of 0.767 years.
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5.0	 RECOMMENDATIONS

No specific recommendations can be made at this time.

	

6.0	 CURRENT PROBLEMS

No current problems have been Identified.

WORK PLAN STATUS

~	
The work plan is complete.

	

8.0	 LIST OF ACTION ITEMS

No Items requiring unusual action have come to light during this report

perlQd-

-	 `
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