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Abstract
Colloidal dispersions are commonly encountered in everyday life and represent an important
class of complex fluid. Of particular significance for many commercial products and industrial
processes is the ability to control and manipulate the macroscopic flow response of a dispersion
by tuning the microscopic interactions between the constituents. An important step towards
attaining this goal is the development of robust theoretical methods for predicting from
first-principles the rheology and nonequilibrium microstructure of well defined model systems
subject to external flow. In this review we give an overview of some promising theoretical
approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for
which the colloidal particles interact via strongly repulsive, spherically symmetric interactions.
In presenting the various theories, we will consider first low volume fraction systems, for which
a number of exact results may be derived, before moving on to consider the intermediate and
high volume fraction states which present both the most interesting physics and the most
demanding technical challenges. In the high volume fraction regime particular emphasis will be
given to the rheology of dynamically arrested states.
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1. Introduction and overview

Complex fluids exhibit a rich variety of flow behaviour
which depends sensitively upon the thermodynamic control
parameters, details of the microscopic interparticle interactions
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(a) (b) (c)

Figure 1. A schematic illustration of coarse graining as applied to colloidal dispersions. Continuum mechanics approaches treat the
dispersion as a single continuum fluid (panel (a)), whereas a fully detailed picture is obtained by treating both colloids and solvent explicitly
(panel (c)). The theoretical methods considered in this work operate at an intermediate level (panel (b)) in which the colloids are explicitly
resolved but the solvent may be treated as a continuum.

and both the rate and specific geometry of the flow under
consideration. The highly nonlinear response characteristic
of complex fluids may be readily observed in a number of
familiar household products [1]. For example, mayonnaise
consists of a stabilized emulsion of oil droplets suspended in
water and behaves as a soft solid when stored on the shelf but
flows like a liquid, and is thus easy to spread, when subjected
to shear flow with a knife [2]. This nonlinear viscoelastic
flow behaviour, known as shear thinning, may be manipulated
on the microscopic level by careful control of the oil droplet
size distribution. In contrast, a dispersion of corn-starch
particles in water, at sufficiently high concentrations, exhibits a
dramatic increase in shear viscosity with increasing shear rate;
a phenomenon called shear thickening [3, 4]. Even the familiar
practical problem of extracting tomato ketchup from a glass
bottle presents a highly nonlinear flow. In this case the applied
shear stress, generally implemented by shaking, must exceed
a critical value, the yield stress, before the ketchup begins to
flow as desired.

Colloidal dispersions are a class of complex fluid
which display all of the above mentioned nonlinear flow
responses [5]. In addition to being of exceptional relevance
for many technological processes, the considerable research
interest in colloidal dispersions owes much to the existence
of well characterized experimental systems for which the
interparticle interactions may be tuned to relatively high
precision (often possible by simply varying the solvent
conditions) [6]. The ability to control the microscopic
details of the colloidal interaction facilitates comparison of
experimental results with theoretical calculations and computer
simulations based on idealized models (see e.g. [7–9]). In
particular, the size of colloidal particles makes possible light
scattering, neutron scattering and microscopy experiments
which provide information inaccessible to experiments on
atomic systems and which have enabled various aspects of
liquid state theory to be tested in detail2.

The typical size of a colloidal particle lies in the range
10 nm–1 μm and thus enables a fairly clear separation of

2 For example, in [8] and [9] dynamic light scattering was employed to
measure the coherent transient density correlator of spherical hard-sphere-
like colloids. The data confirmed the factorization properties of the α

and β relaxation, as predicted by the mode-coupling theory of the glass
transition [10, 11]. In [12] confocal microscopy experiments on a mixture of
PMMA colloids and non-adsorbing polymer were used to confirm the capillary
wave theory of the fluctuating interface between demixed fluid phases [13].

length- and timescales to be made between the colloids and
the molecules of the solvent in which they are dispersed.
As a result, a reasonable first approximation is to represent
the solvent as a continuum fluid, generally taken to be
Newtonian and thus characterized by a constant solvent
viscosity (see figure 1). For suspended particles with a
length-scale greater than approximately 1 μm the continuum
approximation of the solvent is completely appropriate.
However, this becomes questionable as the average size of
the particles is reduced below a few nanometres, at which
point the discrete nature of the solvent can no longer be
ignored. Colloidal particles occupy an intermediate range
of length-scales for which a continuum approximation for
the solvent must be supplemented by the addition of first
order Gaussian fluctuations (Brownian motion) about the
average hydrodynamic fields describing the viscous flow of the
continuum solvent.

The Brownian motion resulting from solvent fluctuations
not only plays an important role in determining the
microscopic dynamics; it is essential for the existence of
a unique equilibrium microstructure. With the important
exception of arrested glasses and gels, the presence of
a stochastic element to the particle motion allows a full
exploration of the available phase space and thus enables
application of Boltzmann–Gibbs statistical mechanics to
quiescent (and ergodic) colloidal dispersions. While the
specific nature of the balance between Brownian motion,
hydrodynamic and potential interactions depends upon both
the observable under consideration and the range of system
parameters under investigation, it is the simultaneous
occurrence of these competing physical mechanisms which
gives rise to the rich and varied rheological behaviour of
dispersions. Unfortunately, the complicated microscopic
dynamics presented by dispersions also serves to complicate
the theoretical description of these systems [14].

The present review has been written with a number of
aims in mind. On one hand, we would like to present a
relatively concise overview of the main phenomenological
features of the rheology of dispersions of spherical colloidal
particles. In order to reduce the parameter space of the
discussion, emphasis will be placed on the simple hard-sphere
model for which the space of control parameters is restricted
to two dimensions (volume fraction and flow rate). While both
attractive colloids and the response to non-shear flows will be
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addressed, no attempt has been made to be comprehensive in
this respect. Another primary aim of the present work is to
provide an overview, within the context of the aforementioned
phenomenology, of microscopically motivated approaches to
the rheology and flow induced microstructure of colloidal
dispersions. Although we will discuss some less well founded
‘schematic model’ approaches, the focus here is upon ‘first-
principles’ theories which prescribe a route to go from a
well defined microscopic dynamics to closed expressions for
macroscopically measurable quantities.

The formulation of a robust theory of dispersion rheology
from microscopic starting points constitutes a formidable
problem in nonequilibrium statistical mechanics. Although
considerable progress has been made in this direction,
a comprehensive constitutive theory analogous to that of
Doi and Edwards for entangled linear polymers [21–24]
remains to be found. At present there exist a number of
alternative microscopic theoretical approaches to dispersion
rheology which, despite showing admirable success within
limited ranges of the system parameters, have so far
been unable to provide a unified global picture of the
microscopic mechanisms underlying the rheology of colloidal
dispersions. Despite common starting points (the many-body
Smoluchowski equation) the disparate nature of the subsequent
approximations, each tailored to capture a particular physical
aspect of the cooperative particle motion, make it difficult
to establish clear relations between different theoretical
approaches. A goal of this work is thus to clarify the
range of validity of the various theoretical approaches and to
identify common ground. We note that the present work is
well complemented by a number of recent reviews addressing
dispersion rheology from both experimental [25, 26] and
theoretical perspectives [19, 27, 28].

The paper is organized as follows: in section 2 we
will discuss briefly some traditional continuum mechanics
approaches to rheology, both to give a feeling for the
spirit of such work and to put into context some of the
microscopic results presented later (in section 7). In
section 3 we will introduce and discuss in some detail the
Smoluchowski equation defining the microscopic dynamics
under consideration. In section 4 we will consider the
equilibrium and nonequilibrium phase behaviour of hard-
sphere colloids in the absence of flow, which is a necessary
pre-requisite to the subsequent discussions. In section 5 we
will give a brief overview of the relevant basic phenomenology
of dispersion rheology, including the shear thinning and shear
thickening of colloidal fluids and the yielding of colloidal
glasses. In section 6 we will consider the various theoretical
approaches to treating colloidal fluids under external flow. In
particular, exact results for the microstructure and rheology of
low volume fraction systems and their (approximate) extension
to finite fluid volume fractions are discussed in sections 6.2
and 6.3, respectively. In section 7, we consider the recently
developed mode-coupling based approaches to the rheology of
dense colloidal suspensions which enable glass rheology to be
addressed. Finally, in section 8 we will provide an outlook for
future work and identify possible new avenues for theoretical
investigation.

2. Continuum mechanics approaches

Rheology is primarily an experimental discipline. Indeed, one
of the simplest experiments imaginable is to exert a force
on a material in order to see how it deforms in response.
More precisely, in a controlled rheological experiment one
measures either the stress arising from a given strain or,
more commonly, the strain accumulated following application
of an applied stress. In practice, both stress controlled
and strain controlled experiments are performed and provide
complementary information regarding the response of a
material sample. For the purpose of this review we will
focus upon situations in which a homogeneous strain field is
prescribed from the outset. The description of experiments
for which macroscopic stress is employed as a control
parameter poses an enormous challenge for microscopically
based theories and demands careful consideration of the
nontrivial mechanisms by which the applied stress propagates
into the sample from the boundaries.

Given the apparent complexity of any microscopic theory,
it is quite natural to begin first at a more coarse-grained level of
description in an effort to establish the general phenomenology
and mathematical structure of the governing equations at
the continuum level. Historically, this methodology was
pioneered by Maxwell in his 1863 work on viscoelasticity
and continued to develop into the following century through
the efforts of distinguished rheologists such as Rivlin and
Oldroyd [29]. While much of this early work aimed
to achieve a more fundamental mathematical understanding
of viscoelastic response, strong additional motivation was
provided by experiments on polymeric systems which exposed
a large variety of interesting nonlinear rheological phenomena
in need of theoretical explanation. Theoretical approaches to
continuum rheology thus seek to obtain a constitutive equation
relating the stress, a tensorial quantity describing the forces
acting on the system [30], to the deformation history encoded
in the strain tensor.

The typical ‘rational mechanics’ approach to this problem
is to assume a sufficiently general integral or differential
constitutive relation between stress and strain and to then
constrain this as much as possible via the imposition
of certain exact or approximate macroscopic symmetry,
conservation and invariance principles [22, 29, 31]. The clear
drawback to this methodology is that the entire particulate
system is viewed as a single continuum field, thus losing
any contact to the underlying colloidal interactions and
microstructure ultimately responsible for the macroscopic
response (see figure 1). As a result, such constitutive
theories are neither material specific nor genuinely predictive
in character. Despite these shortcomings, the continuum
mechanics approach to rheology has attained a great level of
refinement and can be applied to fit experimental data from
a wide range of physical systems [22, 29]. Moreover, the
experience gained through continuum mechanics modelling
may well prove useful in guiding the construction of more
sophisticated microscopic theories by providing constraints on
the admissible mathematical form of the constitutive equations.
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2.1. The Lodge equation

It is perhaps instructive to give an illustration of the spirit
in which phenomenological constitutive relations may be
constructed using continuum mechanics concepts. The
example we choose is not only of intrinsic interest, but will also
prove relevant to the discussion of a recent microscopically
based theory of glass rheology [16–18] to be discussed in
section 7. We consider a viscoelastic fluid subject to shear
deformation with flow in the x-direction and shear gradient
in the y-direction (a convention we will continue to employ
throughout the present work). Suppose that we wish to
determine the infinitesimal shear stress dσxy at time t arising
from a small strain increment dγ at an earlier time t ′. As
the material is viscoelastic, it is reasonable to assume that the
influence of the strain increment dγ (t ′) = γ̇ (t ′) dt ′ on the
stress at time t must be weighted by a decaying function of
the intervening time t − t ′, in order to represent the influence
of dissipative processes. Adopting a simple exponential form
for the relaxation function it is thus intuitive to write

dσxy(t) = G∞ exp

[
− t − t ′

τ

]
γ̇ (t ′) dt ′, (1)

where τ is a relaxation time and G∞ is an elastic constant (the
infinite frequency shear modulus). Assuming linearity, the total
stress at time t may thus be constructed by summing up all
of the infinitesimal contributions over the entire flow history,
which we take to extend into the infinite past. We thus arrive at

σxy(t) =
∫ t

−∞
dt ′ G∞ exp

[
− t − t ′

τ

]
γ̇ (t ′). (2)

Partial integration leads finally to

σxy(t) = 1

τ

∫ t

−∞
dt ′ G(t − t ′)γ (t, t ′), (3)

where G(t) = G∞ exp[−t/τ ] is the shear modulus and γ (t, t ′)
is the accumulated strain γ (t, t ′) = ∫ t

t ′ ds γ̇ (s). The simple
integral relation (3) between shear stress and shear strain was
first considered by Boltzmann. Indeed, the assumption that the
stress increments (1) may be summed linearly to obtain the
total stress is often referred to as the ‘Boltzmann superposition
principle’.

In order to extend (3) to a tensorial relation, i.e. a true
constitutive equation, an appropriate tensorial generalization
of the accumulated strain γ (t, t ′) must be identified. For the
spatially homogeneous deformations under consideration the
translationally invariant deformation gradient tensor E(t, t ′)
transforms a vector (‘material line’) at time t ′ to a new vector
at later time t via r(t) = E(t, t ′) · r(t ′), where Eαβ =
∂rα/∂rβ . An alternative nonlinear choice of strain measure
is the symmetric Finger tensor B(t, t ′) = E(t, t ′)ET(t, t ′).
The Finger tensor contains information about the stretching of
material lines during a deformation but is invariant with respect
to solid body rotations of the material sample. For simple shear
the Finger tensor is given explicitly by

B =
( 1+ γ 2 γ 0

γ 1 0
0 0 1

)
(4)

where γ ≡ γ (t, t ′). The accumulated strain in the integrand
of equation (3) can thus be identified as the xy element of
B(t, t ′). This suggests that the Boltzmann integral form (3)
may be extended using the simple ansatz

σ (t) =
∫ t

−∞
dt ′ B(t, t ′)

G∞e−(t−t ′)/τ

τ
, (5)

for the full stress tensor (see section 2.3 below for more
justification of this nontrivial step). Equation (5) is known
as the Lodge equation in the rheological literature and
is applicable in both the linear and nonlinear viscoelastic
regime [22].

2.2. The upper-convected Maxwell equation

The assumption of an exponentially decaying shear modulus is
generally attributed to Maxwell, who realized that this choice
enabled an interpolation between a purely elastic response to
deformations rapid on the timescale set by τ and a viscous,
dissipative response in the limit of slowly varying strain fields.
In fact, the Lodge equation derived above is simply the integral
form of a nonlinear (differential) Maxwell equation. In order
to show this we first differentiate (5) to obtain

Dσ

Dt
+ 1

τ
σ = G∞

τ
1, (6)

where we have introduced the upper-convected derivative [29]

Dσ

Dt
= σ̇ (t)− κ(t) σ (t)− σ (t) κT(t), (7)

and where the velocity gradient tensor κ(t) is defined in terms
of the deformation gradient tensor via

∂

∂ t
E(t, t ′) = κ(t)E(t, t ′). (8)

For an incompressible material the stress is only determined
up to a constant isotropic term. Equation (6) may thus be
expressed in an alternative form by first defining a new stress
tensor

Σ = σ − G∞1, (9)

and substituting for σ in equation (6). This yields

DΣ
Dt

+ 1

τ
Σ = G∞(κ(t)+ κT(t)). (10)

This differential form of the Lodge equation is known as the
upper-convected Maxwell equation [22] and is a nonlinear
generalization of Maxwell’s original scalar model to the full
deviatoric stress tensor. Historically, the upper-convected
Maxwell equation was first proposed by Oldroyd [29] directly
on the basis of Maxwell’s differential form.

2.3. Material objectivity

The assumption that one can go from (3) to (5) on the basis
of a single off-diagonal element appears at first glance to be
rather ad hoc. On one hand, this choice can be justified
retrospectively, using the fact that the Lodge equation (5) is
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derivable from a number of simple molecular models, e.g. the
dumbbell model for dilute polymer solutions [22]. However,
from a continuum mechanics perspective (5) is the simplest
generalization of (3) which satisfies the ‘principle of material
objectivity’. This principle expresses the requirement that
the constitutive relationship between stress and strain tensors
should be invariant with respect to rotation of either the
material body or the observer, thus preventing an unphysical
dependence of the stress on the state of rotation. That
this symmetry is an approximation becomes clear when
considering the material from a microscopic viewpoint: in
a noninertial rotating frame the apparent forces clearly
lead to particle trajectories which depend upon the angular
velocity. For many systems the neglect of these effects
on the macroscopic response of the system is an extremely
good approximation. For the overdamped colloidal dynamics
considered in this work inertia plays no role and the principle
of material objectivity is exact3.

Mathematically, it is straightforward to check whether
or not a proposed tensorial constitutive equation is material
objective. When subject to a time-dependent rotation R(t) the
deformation gradient tensor transforms as

Ê(t, t ′) = R(t)E(t, t ′)RT(t ′), (11)

where Ê is the deformation gradient in the rotating frame. The
dependence of Ê upon the state of rotation arises because E

contains information about both the stretching and rotation of
material lines. Insertion of the transformed tensor (11) into
the constitutive equation for the stress thus corresponds to a
rotation of the material sample. Material objectivity is verified
if the resulting stress tensor is given by

σ̂ (t) = R(t)σ (t)RT(t). (12)

As noted, the Finger tensor B contains only information about
the stretching of material lines and transforms under rotation
according to

B̂(t, t ′) = R(t)B(t, t ′)RT(t). (13)

The material objectivity of the Lodge equation (5), and thus
the upper-convected Maxwell equation (10), follows trivially
from the fact that σ is a linear functional of B. Many
phenomenological rheological models thus start by assuming
a general functional dependence σ (t) = F[B] in order to
guarantee a rotationally invariant theory.

The vast majority of microscopically motivated theories
of dispersion rheology treat only a single scalar element of
the stress tensor (generally the shear stress σxy ). Indeed, the
rarity of microscopic tensorial constitutive theories may well
be the primary reason for the apparent gap between continuum
and statistical mechanical theories aiming to describe common
phenomena. We will revisit the concept of material objectivity
in section 7 when considering a recently proposed tensorial
constitutive equation for dense dispersions.

3 A useful discussion of material objectivity may be found in [33]. In
Addition, we refer the reader to [32], which documents the insightful
comments of de Gennes regarding this issue.

2.4. Beyond continuum mechanics

In the last decade, significant progress has been made
in understanding the response of colloidal dispersions to
external flow on a level which goes beyond the fully
coarse-grained phenomenological approaches of traditional
continuum rheology. Important steps towards a more refined
picture have been provided by studies based on mesoscopic
models [25, 34–36]. However, while such phenomenological
approaches can reveal generic features of the rheological
response, they are not material specific and can therefore
address neither the influence of the microscopic interactions on
the macroscopic rheology nor the underlying microstructure,
as encoded in the particle correlation functions. This deeper
level of insight is provided by fully microscopic approaches
which start from a well defined particle dynamics and, via a
sequence of either exact or clearly specified approximate steps,
lead to closed expressions for macroscopically measurable
quantities. The symmetry, invariance and conservation
principles used as input in the construction of continuum
theories, such as the material objectivity discussed in
section 2.3, should then emerge directly as a consequence
of the microscopic interactions. Such an undertaking clearly
requires the machinery of statistical mechanics.

Theories founded in statistical mechanics provide infor-
mation regarding the correlated motion of the constituent
particles and are thus capable, at least in principle, of capturing
nontrivial and potentially unexpected cooperative behaviour as
exhibited by equilibrium and nonequilibrium phase transitions.
This ability to capture emergent phenomena is in clear contrast
to continuum approaches where such physical mechanisms
must be input by hand. An additional advantage of a
statistical mechanics based approach to rheology over the
direct application of continuum mechanics is that important
additional information is provided regarding the microstructure
of the system, as encoded in the correlation functions. It
thus becomes possible to connect the constitutive relations to
the underlying correlations between the colloidal particles and
obtain microscopic insight into the macroscopic rheological
response. Additional motivation to theoretically ‘look inside’
the flowing system is provided by developments in the direct
visualization and tracking of particle motion in experiments on
colloidal dispersions (confocal microscopy) [37–39], together
with advances in the computer simulation of model systems
under flow [40–42].

Although beyond the scope of the present work, we note
that the influence of steady shear flow on glassy states has been
addressed, albeit in an abstract setting, by generalized mean-
field theories of spin glasses [43, 44]. Spin glass approaches
have proved useful in describing the dynamical behaviour of
quiescent systems [45]. In order to mimic the effect of shear
flow a nonconservative force is introduced to bias the dynamics
and break the condition of detailed balance characterizing the
equilibrium state [46]. While the abstract nature of these
treatments certainly lends them a powerful generality, the lack
of material specificity makes difficult a direct connection to
experiment.
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3. Microscopic dynamics

Before addressing the phenomenology (section 5) and
approximate theories (sections 6 and 7) of colloid rheology it is
rewarding to first consider in detail the microscopic equation-
of-motion determining the overdamped colloidal dynamics. By
a careful assessment of the fundamental equation-of-motion a
number of general observations and comments can be made
regarding the character of nonequilibrium states, solutions
in special limits, important dimensionless parameters and
influence of hydrodynamics, which are independent of the
specific system or approximation scheme under consideration.

We consider a system consisting of N Brownian colloidal
particles interacting via spherically symmetric pairwise
additive interactions and homogeneously dispersed in an
incompressible Newtonian fluid of given viscosity. The
probability distribution of the N-particle configuration is
denoted by �(t) and satisfies the Smoluchowski equation [14]

∂�(t)

∂ t
+

∑
i

∂ i · ji = 0 (14)

where the probability flux of particle i is given by

ji = vi(t)�(t)−
∑

j

Di j · (∂ j − β F j)�(t), (15)

where β = 1/kBT is the inverse temperature. The
hydrodynamic velocity of particle i due to the applied flow
is denoted by vi(t) and the diffusion tensor Di j describes
(via the mobility tensor Γi j = βDi j ) the hydrodynamic
mobility of particle i resulting from a force on particle j .
The hydrodynamic velocity can be decomposed into affine and
particle induced fluctuation terms vi(t) = κ(t) · ri + vfl

i (t),
where vfl

i (t) can be expressed in terms of the third rank
hydrodynamic resistance tensor [47]. The force F j on particle
j is generated from the total potential energy according to
F j = −∂ j UN, where, in the absence of external fields, UN

depends solely on the relative particle positions. The three
terms contributing to the flux thus represent the competing
effects of (from left to right in (15)) external flow, diffusion
and interparticle interactions.

While the Smoluchowski equation (14) is widely accepted
as an appropriate starting point for the treatment of colloidal
dynamics, alternative approaches based on the Fokker–
Planck equation have also been investigated [48]. On
the Fokker–Planck level of description the distribution
function retains a dependence on the particle momenta.
Although this makes possible the treatment of systems
with a temperature gradient (leading to thermophoretic
effects), considerable complications arise when attempting to
treat hydrodynamic interactions which make preferable the
Smoluchowski equation.

For the special case of monodisperse hard-spheres at
finite volume fractions under steady flow equation (14)
can be numerically integrated over the entire fluid range
using computationally intensive Stokesian dynamics simula-
tion [41, 49, 50]. This simulation technique includes the
full solvent hydrodynamics and provides a useful benchmark
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Figure 2. The mean-squared-displacement of non-interacting
colloidal particles in flow (x), gradient (y) and vorticity (z)
directions as a function of time. The MSD in flow direction exhibits
enhanced diffusion (‘Taylor dispersion’) for values of the shear strain
greater than unity. Also shown are contour plots of the
(non-normalized) probability distribution P1(r, t)N(t) (see
equation (16)) in the z = 0 plane at times 2D0 R−2t = 0.15, 1 and 5,
demonstrating shear induced anisotropy for γ > 1 related to the
onset of Taylor dispersion.

for theoretical approaches (for an overview of the computer
simulation of viscous dispersions we refer the reader to [51]
and references therein). While Stokesian dynamics simulations
have focused primarily on simple shear, results have also been
reported for extensional flow geometries [52].

3.1. Non-interacting particles

For the special case of non-interacting particles (F j =
0) equations (14) and (15) describe the configurational
probability distribution of an ideal gas under externally applied
flow and may be solved analytically using the method of
characteristics [53]. For non-interacting particles under steady
shear the many-particle distribution function is given by a
product of single particle functions �({ri}, t) = P1(r1, t) ×
· · · × P1(rN, t), where P1 is given by

P1(r, t) = 1

N(t)
exp

[−x2 − y2(1+ γ 2

3 )+ γ xy

N(t)
− z2

4D0t

]
(16)

when the initial condition P1(r, 0) = δ(0) is employed. The
normalization is given by N(t) = (4π D0t)3(1+(γ̇ t)2/12) and
the strain by γ = γ̇ t . Given a suitably localized initial density
distribution equation (16) essentially describes the dispersion
of a colloidal droplet in a solvent (e.g. ink in water) under shear,
as is apparent from figure 2, which shows contour plots of the
probability distribution at three different times for a given shear
rate.

Although non-interacting colloids represent a trivial case,
it is nevertheless instructive to consider the mean-squared-
displacement (MSD), characterizing the diffusive particle
motion, both parallel and orthogonal to the flow direction in
simple shear [54]. In both the vorticity and shear gradient
directions, flow has no influence and the equilibrium result
is recovered, δz2 = δy2 = 2D0 t , with D0 the single
particle diffusion coefficient. In the flow direction the MSD is

6

ht
tp
://
do
c.
re
ro
.c
h



enhanced by a coupling between Brownian motion and affine
advection, yielding δx2 = 2D0 t (1 + γ̇ 2t2/3), where γ̇ is
the shear rate. The physical origin of this enhanced diffusion,
termed ‘Taylor dispersion’ [55], is that the random motion of
a given colloid leads to its displacement into planes of laminar
flow with a velocity different from that of the original point.
This constant and random ‘changing of lanes’ leads, on the
average, to a dramatically increased rate of diffusion in the
direction of flow. The accelerated rate of mixing achieved by
stirring a dilute dispersion is thus almost entirely attributable
to local Taylor dispersion. We note also that analogous effects
arising from flow–diffusion coupling can also be identified in
other flow geometries, such as the practically relevant case of
Poiseuille flow along a cylindrical tube [54].

3.2. Dimensionless parameters

The Smoluchowski equation describes the dynamics of
spherical colloidal particles dispersed in an incompressible
Newtonian fluid and provides the fundamental starting point
for all theoretical work to be described in the following
sections. An appropriate dimensionless Reynolds number
governing the solvent flow may be defined as Re = ργ̇ R2/η,
with γ̇ a characteristic flow rate, ρ is the density, η the solvent
viscosity and R the colloidal length-scale. Due to the small size
of the colloidal particles Re remains small for all situations
of physical relevance and the Stokes equations, rather than
the more complicated Navier–Stokes equations, may thus be
employed in treating the solvent flow.

Given that Re remains small, two dimensionless
parameters are of particular importance in determining the
equilibrium and nonequilibrium behaviour. The first of these
is the colloidal volume fraction φ = 4πn R3/3, with number
density n and particle radius R. The maximum volume fraction
achievable for monodisperse spheres is 0.74 corresponding to
an optimally packed face-centred-cubic crystal structure. For
the purposes of the present work we will find it convenient
to divide the physical range of volume fractions into three
subregions: (i) low packing, φ < 0.1, (ii) intermediate
packing, 0.1 < φ < 0.494, and (iii) high packing, 0.494 < φ.
While this division is somewhat arbitrary, it will later prove
useful in discussing the various theoretical approximation
schemes currently available.

The second important dimensionless parameter is the
Peclet number Pe = γ̇ R2/2D0 [14]. The Peclet number is
a measure of the importance of advection relative to Brownian
motion and determines the extent to which the microstructure is
distorted away from equilibrium by the flow field. In the limit
Pe → 0 Brownian motion dominates and the thermodynamic
equilibrium state is recovered. Conversely, in the strong flow
limit, Pe → ∞, solvent mediated hydrodynamic interactions
may be expected to dominate the particle dynamics, although,
in practice, surface roughness and other perturbing effects turn
out to complicate this limit [56] (see section 6.2 for more
details on this point).

Finally, we would like to note that there exists a further,
nontrivial dimensionless quantity implicit in the many-body
Smoluchowski equation (14). An increase in either the
dispersion volume fraction or attractive coupling between

particles is accompanied by an increase in the structural
relaxation timescale of the system τα characterizing the
temporal decay of certain two-point autocorrelation functions.
This enables the Weissenberg number to be defined as
Wi = γ̇ τα. For intermediate and high volume fractions,
particularly those close to the colloidal glass transition, it is the
Weissenberg number, rather than the ‘bare’ Peclet number Pe,
which dominates certain aspects of the nonlinear rheological
response, as has been emphasized in [57]. For the low volume
fraction systems to be considered in section 6.2 the structural
relaxation timescale is set by R2/2D0, leading to Pe = Wi .

3.3. Neglecting solvent hydrodynamics

In many approximate theories aiming to describe intermediate
and high volume fraction dispersions the influence of solvent
hydrodynamics beyond trivial advection is neglected from the
outset. For certain situations (e.g. glasses) this approximation
is partially motivated by physical intuition, however, in most
cases, the omission of solvent hydrodynamics is an undesirable
but unavoidable compromise made in order to achieve tractable
closed expressions. Accordingly, the expression for the
probability flux (15) is approximated in two places, which we
will now discuss in turn.

The first approximation is to set Di j = D0δi j , thus
neglecting the influence of the configuration of the N colloidal
particles on the mobility of a given particle. For low and
intermediate volume fraction fluids this may be reasonable
for Pe � 1 but can be expected to break down for
Pe > 1 as hydrodynamics becomes increasingly important
in determining the particle trajectories. In particular, the
near-field lubrication forces [47] which reduce the mobility
when the surfaces of two particles approach contact play an
important role in strong flow and are responsible for driving
cluster formation and shear thickening [58] (see section 5.3).
For dense colloidal suspensions close to a glass transition the
role of hydrodynamics is less clear. For certain situations of
interest (e.g. glasses close to yield) the relevant value of Pe is
very small and suggests that hydrodynamic couplings should
not be of primary importance.

The second common approximation to (15) arising from
the neglect of solvent hydrodynamics is the assumption of a
translationally invariant linear flow profile v(r, t) = κ(t) · r,
where κ(t) is the (traceless) time-dependent velocity gradient
tensor introduced in equation (8). In an exact calculation the
solvent flow field follows from solution of Stokes equations
with the surfaces of the N colloidal particles in a given
configuration providing the boundary conditions (essentially
what is done in Stokesian dynamics simulation [41, 49, 50]).
By replacing this solvent velocity field with the affine flow, we
neglect the need for the solvent to flow around the particles
and are thus able to fully specify the solvent flow profile from
the outset, without requiring that this be determined as part
of a self-consistent calculation4. If necessary, the assumption

4 Interestingly, the force acting on an isolated hard-sphere of radius R in
a Newtonian solvent under (Stokesian) shear flow is identical to that acting
on a point particle (R → 0) moving with the affine flow; i.e. the fact that
the solvent flows around the particle does not influence the resulting force.
However, setting v(r, t) = κ(t) · r is an approximation for finite colloidal
volume fraction.
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of purely affine flow could be corrected to first order. For
example, under simple shear flow the solvent flow profile
around a single spherical particle is well known [30] and could
form the basis of a superposition-type approximation to the full
fluctuating velocity field.

It is important to note that the assumption of a
translationally invariant velocity gradient κ(t) is potentially
rather severe as it excludes from the outset the possibility
of inhomogeneous flow, as observed in shear banded and
shear localized states. While physically reasonable for low
and intermediate density colloidal fluids, the assumption of
homogeneity could become questionable when considering the
flow response of dynamically arrested states, for which brittle
fracture may preclude plastic flow5. Moreover, it is implicit
in the approximation v(r, t) = κ(t) · r that the imposed
flow profile acts instantaneously throughout the system. In
experiments where strain or stress are applied at the sample
boundaries a finite time is required for transverse momentum
diffusion to establish the velocity field. Nevertheless,
experiments and simulations of the transition from equilibrium
to homogeneous steady state flow have shown that a linear
velocity profile is established long before the steady state
regime is approached, thus suggesting that the assumption of
an instantaneous translationally invariant flow is acceptable for
certain colloidal systems [62].

3.4. Nonequilibrium states

In equilibrium, the principle of detailed balance asserts that
the microscopic probability flux vanishes, ji = �∂ i(ln � +
βUN) = 0, where UN is the total interparticle potential energy.
This balance between conservative and Brownian forces thus
yields the familiar Boltzmann–Gibbs distribution �e =
exp(−βUN)/ZN, where ZN is the configurational part of the
canonical partition function. In the presence of flow (κ(t) �= 0)
there exists a finite probability current which breaks the time
reversal symmetry of the equilibrium state and detailed balance
no longer applies. A nonvanishing probability current thus
serves to distinguish between equilibrium and nonequilibrium
solutions of (14) and rules out the possibility of a Boltzmann–
Gibbs form for the nonequilibrium distribution. While such
a Boltzmann–Gibbs distribution is clearly inadequate for
nonpotential flows (e.g. simple shear), for potential flows
(e.g. planar elongation) it is perhaps tempting to assume such a
distribution by employing an effective ‘flow potential’ Uf (see
e.g. [63]). The fundamental error of assuming an ‘effective
equilibrium’ description of nonequilibrium states is made very
clear by the non-normalizability of the assumed distribution
� ∼ exp(−β(UN + Uf)). These considerations serve to
emphasize the fact that the only true way to determine the
distribution function for systems under flow is to solve the
Smoluchowski equation (14).

5 In [59] a confocal microscopy study of polymethyl methacrylate
(PMMA) colloids suspended in a mixture of decalin and tetralin revealed
inhomogeneous plug flow for glassy states. In contrast, the rheological
experiments performed in [60] and [61] using thermosensitive PNIPAM core–
shell particles are fully consistent with homogeneous flow, both above and
below the glass transition.

For much of the present work we will focus on the
response of colloidal dispersions to steady flows. While
experiment and simulation clearly demonstrate that well
defined steady states may be achieved following a period
of transient relaxation, it is interesting to note that there
exists no mathematical proof of a Boltzmann H-theorem for
equation (14) which would guarantee a unique long-time
solution for the distribution function. The absence of an
H-theorem for colloidal dispersions under steady flow is a
consequence of the hard repulsive core of the particles which
invalidates the standard methods of proof generally applied to
Fokker–Planck-type equations [19, 46].

A further nontrivial aspect of equation (14) emerges when
considering the translational invariance properties of the time-
dependent distribution function �(t) ≡ �(t, {ri}), achieved
by shifting all particle coordinates by a constant vector r′i =
ri + a (see section 7.3 for more details). For an arbitrary
incompressible flow it has been proven that a translationally
invariant initial distribution function leads to a translationally
invariant, but anisotropic distribution function �(t), despite
the fact that the Smoluchowski operator [14] generating the
dynamics is itself not translationally invariant [17]. Although
the proof outlined in [17] omitted hydrodynamic interactions,
it may be expected that the same result holds in the presence of
hydrodynamics due to the dependence of the diffusion tensors
on relative particle coordinates.

4. Quiescent states

4.1. Hard-spheres

Theoretical and simulation studies based on equation (14) have
focused largely on the hard-sphere model. In addition to being
mathematically convenient, the focus on this simple model
is motivated largely by the availability of well characterized
hard-sphere-like experimental colloidal systems [7]. In the
absence of flow, a system of monodisperse hard-sphere colloids
remain in a disordered fluid phase up to a volume fraction of
φ = 0.494, beyond which they undergo a first order phase
transition to a solid phase of φ = 0.545 with face-centred-
cubic order (see figure 3). This unexpected, entropically
driven, ordering transition was first observed using molecular
dynamics computer simulation in the late 1950s [64] and
remains a current topic of both experimental and theoretical
research (for a recent review see [65]).

Making the system slightly polydisperse frustrates
crystalline ordering and suppresses the freezing transition. In
sufficiently polydisperse systems6 a disordered fluid remains
in the equilibrium state up to a volume fraction φ ≈

0.58, at which point the dynamics becomes arrested and a
colloidal glass state is formed. This dynamical transition
to a non-ergodic solid is characterized by a non-decaying
intermediate scattering function at long times for which
dynamic light scattering results [7, 8] are well described

6 In order to observe glassy behaviour the timescale of crystal nucleation
τfr has to be extended beyond the accessible experimental or simulation
measurement time. Fortunately, τfr is a sensitive function of the degree
of polydispersity and for hard-sphere-like systems a polydispersity ∼5% is
usually sufficient to effectively supress crystallization.
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Figure 3. A schematic illustration of the phase diagram of
hard-spheres as a function of volume fraction. Monodisperse systems
undergo a freezing transition to an FCC crystal with coexisting
densities φ = 0.494 and 0.545. Polydispersity suppresses the
freezing transition resulting in a glass transition at φ ∼ 0.58, which
lies below the random-close-packing value of φ ∼ 0.64.

by the mode-coupling theory (MCT) [10]. The standard
quiescent MCT consists of a nonlinear integro-differential
equation for the transient density correlator which exhibits a
bifurcation, identified as a dynamic glass transition, for certain
values of the system parameters [10]. One of the appealing
aspects of MCT is the absence of adjustable parameters:
all information regarding both the particle interaction
potential and thermodynamic state point enter via the static
structure factor, which is assumed to be available from
either independent measurements or equilibrium statistical
mechanical calculations. For monodisperse hard-spheres,
MCT predicts a dynamic glass transition at φ ≈ 0.516 when
the Percus–Yevick [15] approximation is used to generate
the structure factor, although other values may be obtained
using either alternative theories, simulation or experiment to
determine the static equilibrium structure [66]. We note
that using MCT together with Percus–Yevick structure factors
enables a glass transition to be studied for monodisperse
hard-spheres at volume fractions above freezing. Neither
MCT nor PY theory is capable of incorporating crystalline
ordering effects and both implicitly assume an amorphous
microstructure.

A shortcoming of the quiescent MCT is that it predicts an
idealized glass transition with a divergent structural relaxation
time and does not incorporate the activated processes which
in experiment and simulation studies are found to truncate the
divergence. While extensions of MCT aiming to incorporate
additional relaxation channels have been proposed [67, 68], the
underlying microscopic mechanisms remain unclear. Despite
its mean-field character, the MCT does capture some aspects
of the heterogeneous dynamics [69–72] which have been
observed using confocal microscopy [73].

Finally, we note that a similar scenario of crystallization
and dynamical arrest may be observed also in two-dimensional
systems [65, 74]. Despite the reduced dimensionality and
new physical mechanisms associated with melting in two
dimensions (where the hexatic phase plays an important role)
the phase diagram for both monodisperse and polydisperse
hard-disc systems is qualitatively identical to the three-
dimensional case illustrated in figure 3. The close

analogies between two- and three-dimensional systems may
be exploited when considering nonequilibrium situations for
which numerical calculations in 3D may prove prohibitively
time consuming [75]. Viewing a binary mixture as the simplest
form of polydispersity, MCT has been employed to study the
influence of ‘mixing’ (variations in composition and size ratio)
on the glass transition of three-dimensional hard-sphere [76]
and two-dimensional hard-disc [77] systems. These studies
have revealed intriguing connections between glassy arrest and
random-close-packing.

4.2. Attractive spheres

The addition of an attractive component to the hard-sphere
potential can lead to an alternative form of dynamical arrest
to either a gel at low volume fraction [78, 79] or an attractive
glass state at higher volume fractions [80, 81] when the
interparticle attraction becomes sufficiently strong. The origins
of the attractive interaction are various, e.g. van der Waals
forces [6] or the depletion effect when non-adsorbing polymer
is added to a dispersion [82–84]. This form of dynamical
arrest has been investigated experimentally using both dynamic
light scattering (see e.g. [79–81]) and confocal microscopy
(see e.g. [85]). There is now compelling evidence both from
experiment [86] and simulation [87] that for finite densities
gelation occurs via a process of arrested phase separation
and that only for very dilute, strongly attractive, suspensions
does this mechanism cross over to one of diffusion limited
aggregation.

When applied to attractive colloidal systems the MCT
predicts a nonequilibrium ‘phase diagram’ which is in good
agreement with the results of experiment and qualitatively
describes the phase boundary separating fluid from arrested
states as a function of volume fraction and attraction
strength [80, 81]. Recent studies of systems in which the
depletion attraction between particles is complemented by the
addition of a competing long range electrostatic repulsion [88]
have revealed a rich and unexpected phase behaviour, including
stable inhomogeneous phases [89] and metastable arrested
states [90]. In addition, impressive new developments in
colloid chemistry have enabled the construction of ‘colloidal
molecules’ in which the particle surface is decorated with a
prescribed number of attractive sites, thus rendering the total
interaction potential anisotropic [91]. For a review of these
more recent developments we refer the reader to [92].

5. Rheological phenomenology

As noted in the introduction, dispersions of spherically
symmetric colloidal particles exhibit a diverse range of
response to externally applied flow. Much, although not all7,
of the generic rheological behaviour of colloidal dispersions is
captured by the hard-sphere model introduced in section 4.1.
In order to focus the discussion we will consider the special
case of hard-spheres subject to a steady shear flow. In figure 4
we show the results of stress controlled experiments performed

7 For example, the yielding behaviour of attractive colloids is considered
in [93].
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Figure 4. The shear viscosity of an aqueous dispersion of colloidal
latex as a function of the externally applied shear stress. Data for a
range of volume fractions are shown, from dilute up to a dense
colloidal liquid at φ = 0.50. Shear thinning is evident at intermediate
stress values as the viscosity of the dispersion decreases due to
ordering of the particles by the flow. At larger applied stresses, for
sufficiently high volume fraction, the dispersion shear thickens as
hydrodynamic lubrication forces lead to cluster formation and
increased disorder. (Figure adapted from [94].)

on a dispersion of spherical latex particles dispersed in water
at various volume fractions, ranging from a dilute ‘colloidal
gas’ up to φ = 0.5, corresponding to a dense colloidal liquid
state close to the freezing transition [94]. We note that for
the experimental steady shear flow data shown in figure 4
it is not significant that the shear stress is employed as the
control parameter dictating the flow. The quiescent system is
ergodic at all considered state points and qualitatively identical
results may thus be expected in an analogous strain controlled
experiment, provided that the flow remains homogeneous.

5.1. Zero-shear viscosity

For each of the volume fractions shown in figure 4 the
shear viscosity η ≡ σxy/γ̇ is constant for small applied
stresses (corresponding to small shear rates) and defines the
zero-shear viscosity η0. The data shown in figure 4 clearly
demonstrate that the addition of colloidal particles leads to a
dramatic increase of η0 above that of the pure solvent (note the
logarithmic scale in figure 4).

From a theoretical perspective, there are two alternative
ways to understand the increase of η0 as a function of
φ. The first is to relate the viscosity to the flow distorted
pair correlation functions in the limit of vanishing flow
rate (see section 6.1). The leading order anisotropy of
g(r, Pe → 0) captures the perturbing effect of weak flow
on the microstructure and thus describes the increase of η in
terms of temporally local and physically intuitive correlation
functions. The second method, referred to as either the ‘time
correlation’ or ‘Green–Kubo’ approach, provides an equally
rigorous method in which the viscosity is expressed as a
time integral over a transverse stress autocorrelation function
(see section 7). Although the two approaches are formally
equivalent, it is the latter which enables a direct connection to

be made between η0 and the timescale describing the collective
relaxation of the microstructure.

Within the Green–Kubo formalism the thermodynamic
colloidal contribution to the zero-shear viscosity is given
by [191]

η0 ≡ σxy

γ̇
=

∫ ∞

0
dt Geq(t), (17)

where the equilibrium shear modulus is formally defined as a
stress autocorrelation function

Geq(t) = 1

kBT V
〈 σ̂xy e�†

eqt σ̂xy 〉, (18)

where V is the system volume and �†
eq is the equilibrium

adjoint Smoluchowski operator [14]. The fluctuating stress
tensor element is given by σ̂xy ≡ −∑

i F x
i r y

i , and the average
is taken using the equilibrium Boltzmann–Gibbs distribution.

Equation (17) is an exact Green–Kubo relation which
expresses a linear transport coefficient, in this case the shear
viscosity, as an integral over a microscopic autocorrelation
function. For dense colloidal dispersions the shear modulus
starts from a well defined initial value8 from which it rapidly
decays on a timescale set by d2/D0 to a plateau. For much
later times the modulus decays further from the plateau to zero,
thus identifying the timescale of structural relaxation τα (see
figure 5). The ‘two step’ decay of the time-dependent shear
modulus is a generic feature of interacting systems exhibiting
both a rapid microscopic dynamics and a slower, interaction
induced, structural relaxation and is familiar from experiments
and simulations of both colloidal and polymeric systems
(where the Fourier transform G∗(ω) is typically considered,
rather than G(t) directly).

Within the idealized mode-coupling theory (MCT) the
equilibrium shear modulus (18) is approximated by [96]

Geq(t) = kBT

60π2d3

∫ ∞

0
dk k4

(
S′k
Sk

)2

�2
k(t), (19)

where T is the temperature, Sk and S′k are the static structure
factor and its derivative, respectively, and �k(t) is the transient
density correlator defined by

�k(t) = 1

Sk
〈ρ∗k (t)ρk(0) 〉, (20)

where ρk = ∑
j exp(ik · r j). The collective coordinates

ρk are the central quantity within mode-coupling approaches
and their autocorrelation (20) describes the temporal decay
of density fluctuations which slow and ultimately arrest
as the glass transition is approached. The mode-coupling
approximation (19) arises from projection of the dynamics onto
density-pair modes and thus expresses the relaxation of stress
fluctuations in terms of density fluctuations. Within MCT

8 In general, the initial value of the shear modulus is determined by near-field
hydrodynamic lubrication forces. The commonly studied case of Brownian
hard-spheres in the absence of hydrodynamic interactions is a pathological

special case for which G(t → 0) ∼ t− 1
2 as a consequence of the discontinuous

potential interaction. Nevertheless, the Brownian hard-sphere G(t) rapidly
becomes physical for later times. We refer the reader to [95] for more details
on this issue.
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Figure 5. The generalized shear modulus G(t) ≡ G(t, Pe) at a
volume fraction relative to the glass transition
φ − φg = −1.16× 10−3 calculated using the extended
mode-coupling approach [62]. The final relaxation of the equilibrium
modulus (blue curve) serves to define the alpha relaxation timescale.
As the applied shear rate is increased the relaxation timescale is
reduced. Curves are shown for Pe = 5.5× 10−3 (green), 1.1× 10−3

(red) and 5.5× 10−4 (black). The plateau value which develops for
volume fractions approaching the glass transition is indicated by the
broken line. The inset shows the same data as a function of strain γ̇ t .
(Reproduced with permission from [62]. Copyright 2008, IOP
Publishing.)

the correlator is approximated by the solution of a nonlinear
integro-differential equation

�̇q(t)+ �q

[
�q(t)+

∫ ∞

0
dt ′mq(t − t ′)�̇q(t

′)
]
= 0, (21)

where �q = q2/Sq and the memory function is a quadratic
functional of �k(t) which depends upon both volume fraction
and the static structure factor (which serves as proxy for
the pair interactions). Explicit expressions for the quiescent
memory function may be found in [98]. Equation (21) predicts
that τα diverges at the glass transition volume fraction which
then leads, via equations (17) and (19), to a corresponding
divergence of η0. While in many cases the quiescent MCT
gives a good account of experimental data [11] the precise
nature and location of this apparent divergence remains a
matter of debate (see e.g. [97]).

5.2. Shear thinning

Turning again to figure 4 it is evident that for a given volume
fraction the viscosity decreases as a function of shear rate.
This shear thinning behaviour typically sets in when the shear
rate begins to exceed the inverse of the timescale governing
structural relaxation, that is for values of the Weissenberg
number Wi ≡ γ̇ τα > 1, where γ̇ is the characteristic rate-
of-strain and τα is the structural relaxation time. Within the
range 0 < Wi < 1 the system is within the linear response
regime and the flow rate is sufficiently slow that the collective

relaxation of the microstructure, characterized by, e.g., the
decay of the transient density correlator (20), is not influenced.

For Wi > 1 the rate of structural relaxation is enhanced
by the flow field. The modulus thus becomes a function of
the shear rate and the viscosity shear thins. To incorporate this
nonlinear response equation (17) may be generalized to

η(Pe) ≡ σxy(Pe)

γ̇
=

∫ ∞

0
dt G(t, Pe), (22)

where the functional dependence on Pe has been made
explicit. The nonlinear modulus is thus defined as

G(t, Pe) = 1

kBT V
〈 σ̂xy e�†t σ̂xy 〉, (23)

where �† is the adjoint Smoluchowski operator generating
the particle dynamics [14]. Despite the equilibrium averaging
employed in (18), it is important to note that an initial stress
fluctuation σxy evolves to a fluctuation at later time t under
the full dynamics, including the effects of flow. This serves
to distinguish the transient stress correlator (18) from that
which would naturally be measured in a computer simulation,
where all averaging is performed with respect to the full
nonequilibrium distribution function. In the absence of flow
�† = �†

eq and the equilibrium result (18) is recovered.
Recent generalizations of the mode-coupling theory [20]

provide approximate expressions for the nonlinear modulus
G(t, Pe), see section 7. These approaches incorporate the
effects of shear flow into the memory kernel responsible
for slow structural relaxation and describe the speeding
up of the relaxational dynamics. In figure 5 we show
G(t, Pe) calculated using the generalized MCT [62] for
volume fractions close to (but below) the glass transition at
various values of the shear rate. For Wi < 1 the equilibrium
result (blue curve) is not influenced by the flow. However, for
Wi > 1 the longest relaxation time becomes dictated by the
flow and τα ∼ γ̇−1, as is demonstrated by the inset to figure 5
which shows the same data as a function of strain. From
equation (22) it is clear that within this generalized Green–
Kubo approach the decrease of τα with increasing γ̇ results
in shear thinning of the viscosity.

An alternative, although equally valid, viewpoint is
provided by approaches focusing on the flow distorted
pair correlations. Exact results for low volume fraction
dispersions based on the pair Smoluchowski equation (see
section 6.1) have shown that shear thinning results from a
decrease in the Brownian contribution to the shear stress [56].
In dispersions at higher volume fraction the reduction in
the Brownian stress is manifest in an ordering of the
particles in the direction of flow which serves to reduce
the frequency of particle collisions. Within the shear
thinning regime evidence for layered or string-like ordering
in intermediate volume fraction systems has been provided
by Brownian dynamics simulations [99, 100] and, albeit with
different characteristics, by Stokesian dynamics simulations
which include hydrodynamic interactions [49, 101–103].
Interestingly, simulations have also shown that the flow
induced order continues to develop following its initial
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onset. This ‘ripening’ of the ordered phase leads to a time-
dependence of the viscosity known as thixotropy [102–105]
and complicates the determination of flow curves in both
simulation and experiment. For each shear rate the
measurement time must be sufficiently long that the viscosity
saturates to a plateau value before the shear rate is updated.

We note that the same ordering mechanism discussed here
for colloidal dispersions would also lead to an analogous shear
thinning scenario for atomic liquids (e.g. liquid argon). In this
case, however, the shear rates required to observe such non-
Newtonian rheology are several orders of magnitude larger
than those readily accessible in experiment. For this reason,
non-Newtonian effects in atomic systems remain largely a
matter of academic interest.

5.3. Shear thickening

Following the regime of shear thinning, a second Newtonian
plateau develops for which the viscosity attains an approx-
imately constant value as a function of shear rate and the
flow induced ordering of the system continues to develop. At
higher shear rates the viscosity undergoes a rapid increase once
a critical value of the shear stress is exceeded. Such shear
thickening behaviour can be either continuous [58] or discon-
tinuous [106] in character and is somewhat counterintuitive
in light of the discussion presented in section 5.2 regarding
flow induced microstructural ordering and its connection to
shear thinning. Suspensions of nonaggregating particles at
intermediate volume fractions generally show reversible shear
thickening, however the details of the increase in viscosity
depend upon the details of the system (particle-type, solvent,
etc) as well as the thermodynamic control parameters [107].

In section 5.2 we noted that the onset of shear thinning
occurs for values of the Weissenberg number Wi > 1,
reflecting the essential competition between flow and structural
relaxation. In contrast, the onset of shear thickening behaviour
is determined by the value of the bare Peclet number Pe, thus
serving to highlight the different mechanisms dominating the
physics of thinning and thickening states. In experiment, the
difference in scaling of Wi and Pe with particle diameter d
enables the extent of the second Newtonian plateau separating
shear thinning and shear thickening regimes to be controlled as
a function of particle size. When the microstructure under flow
is also of interest, the constraints of instrumental resolution
(in e.g. confocal microscopy) place additional limits on the
particle size which have also to be taken into consideration.

The earliest theoretical explanations of shear thickening
in colloidal dispersions proposed that the observed viscosity
increase is the consequence of an order-to-disorder transi-
tion [108, 109]. Within this picture, the ordered planes
of particles which form within the shear thinning regime,
and which persist throughout the second Newtonian viscosity
plateau, begin to interact via hydrodynamic coupling at
sufficiently high shear rates. This interaction pulls particles out
of the layers, leading to increased particle collisions, disorder,
and a consequent increase in viscosity. The onset of shear
thickening is thus identified with the hydrodynamic instability
of a layered microstructure (see [110] for a discussion of this
issue).

Newtonian Shear thickening
Pe

Shear thinning

Figure 6. Schematic illustration of the microstructural order and
disorder induced in a dense colloidal dispersion by shear flow. At
low values of Pe (leftmost configuration) the viscosity remains
constant as diffusion is able to restore the equilibrium microstructure
more rapidly than the shear flow can disrupt it. At intermediate shear
rates (central configuration) the rate of shear exceeds the rate of
structural relaxation, Wi > 1 leading to microstructural ordering and
shear thinning. At high shear rates (right configuration)
hydrodynamic lubrication forces lead to particle clustering which
strongly enhances the hydrodynamic contribution to the viscosity and
result in shear thickening.

Despite the intuitive appeal of interpreting shear
thickening as an order-to-disorder transition, questions were
raised by the experiments of [110, 111] in which a specific
system (electrostatically stabilized Latex particles in glycols)
was found to display shear thickening in the absence of
an ordered phase. These results suggested that while an
ordered phase may well precede the shear thickening regime
as the shear rate is increased, it is not a necessary pre-
requisite. According to these findings, shear thickening occurs
via an independent physical mechanism and is not simply
related to a loss of microstructural order. Further insight
into the microscopic mechanism underlying shear thickening
was provided by Stokesian dynamics simulations [99, 112]
which identified the formation of hydrodynamically bound
particle clusters at high shear rates. Such ‘hydroclusters’
form when the shear flow is sufficiently strong that the
particle surfaces are driven close together. At such small
separations the hydrodynamic lubrication forces dramatically
reduce the relative mobility of the particles such that they
remain trapped together in a bound orbit (a point which
we will later revisit in section 6.2). Transient shear-driven
hydroclusters would appear to be the defining feature of
shear thickened states and experimental evidence for their
importance is accumulating [113]. Nevertheless, opinion
remains divided regarding the fundamental mechanisms at
work [114].

The hydrodynamic mechanisms described above give
rise to a continuous, albeit rapid, rise in the viscosity as
a function of shear rate. An alternative scenario may
arise when, at some critical value of the shear rate, the
viscosity exhibits a discontinuous jump as the system becomes
jammed [58, 108, 115–117]. While it is anticipated that
hydrodynamics will be relevant for the description of shear
thickening at intermediate volume fractions (e.g. 0 < φ <

0.5, as considered in figure 4) alternative mechanisms may
become important upon approaching the glass transition.
In [118–120] a ‘schematic’ mode-coupling theory similar
to those to be discussed in section 7 was developed, in
which a coupling to stress was introduced into the nonlinear
equations determining the decay of the transient density
correlator. Upon varying the model parameters a range of
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rheological behaviour was revealed, including both continuous
and discontinuous shear thickening, as well as a jamming
transition to a non-ergodic solid state. Within this picture,
shear thickening and jamming are viewed as a type of stress
induced glass transition, for which the applied stress inhibits
particle motion, even in the absence of hydrodynamics. A
number of works have suggested a relationship between shear
thickening and jamming [3, 4, 103, 121] although details of
the connection between hydrodynamic cluster formation and
jamming transitions of the kind more familiar from studies of
granular media [122] remain unclear.

The addition of an attractive component to the strongly
repulsive colloidal core can lead to gel formation and
irreversible flocculation (see section 4.2). For such systems
shear thickening is generally not observed, as the increase in
the hydrodynamic contribution to the viscosity with increasing
shear rate is more than compensated for by the decrease in
the thermodynamic contribution arising from the attraction
(see e.g. [123]). The generic behaviour of gel and floc
states is thus monotonic shear thinning as a function of shear
rate [107]. It is therefore surprising that recent experiments
using attractive carbon black particles [124] have identified
a rich shear thickening behaviour for which the viscosity
increases beyond a critical value of the applied shear stress. In
this case an additional physical mechanism has been proposed
by which the forces exerted by shear flow cause flocs to break
apart, leading to an increased surface area and thus greater
hydrodynamic dissipation [124].

As pointed out in section 5.2, shear thinning is not unique
to colloidal systems and can also be observed, albeit at high
shear rates, in simple atomic liquids. In contrast, shear
thickening of the type discussed above is not found in atomic
systems (for which the ‘solvent’ is a vacuum) and demonstrates
clearly the breakdown of the correspondence between colloidal
and simple liquids for strongly nonequilibrium states. Indeed it
is quite clear that the view of colloids as ‘big atoms’ [125] will
only hold in situations for which the influence of the solvent is
negligible and that new physics may emerge when the role of
hydrodynamic interactions becomes significant. We note that
an alternative type of shear thickening has been observed at
high shear rates in molecular dynamics simulations of simple
liquids [126–129]. In these simulations a profile unbiased
thermostat was employed to remove artefacts which may arise
when a linear flow profile is assumed. Shear thickening was
observed in simulations performed at constant volume, but not
in those performed at constant pressure.

Finally, we would like to note that the onset of shear
thickening at high flow rates has been associated with
unexpected behaviour of the first normal stress difference
N1 = σxx − σyy . Typically, dispersions at low or moderate
shear rate exhibit a positive value of N1, indicating that a
Weissenberg (or ‘rod climbing’) effect would be observed
in shear experiments performed in a Couette geometry [2].
Experiments on dense colloidal dispersions with repulsive
interactions [116, 130, 131] have revealed that N1 can
change sign from positive to negative upon increasing
the flow rate into the regime where the viscosity shear
thickens. Similar behaviour has been observed in Stokesian

R
H

R

Figure 7. Many commonly studied colloidal particles (e.g. PNIPAM)
consist of a polymeric core grafted with a layer of polymer
(schematically represented on the left) which serves to stabilize
against flocculation. Given a sufficiently dense and crosslinked
polymer brush the particles exhibit a strongly repulsive effective
potential interaction approximating that of hard-spheres with radius
R. The ability of the solvent to penetrate into the brush results in a
hydrodynamic radius RH < R. These effects may be mimicked by a
simple hard-sphere model (sketch on the right) in which R/RH can
be used to control the influence of hydrodynamic interactions.

dynamics simulations [132] and in numerical solutions of
the Smoluchowski equation for dilute systems [133]. In
contrast to these results for purely repulsive interactions, recent
experiments on attractive flocculated colloidal dispersions
display a monotonically increasing N1 throughout the shear
thickening regime [124].

5.4. Yield stress

For colloidal fluid states (0 < φ < 0.494) the data presented
in figure 4 represent the generic phenomenology of dispersions
of strongly repulsive colloids under shear flow. In fact, this
behaviour is not limited to simple shear. Qualitatively identical
behaviour is found in Stokesian dynamics simulations for
the extensional viscosity [22] of dispersions of hard-sphere
colloids under steady extensional flow, with the shear rate
replaced by the rate of Hencky strain [52].

As already noted in section 5.1, increasing the volume
fraction of a colloidal liquid leads to a strong increase
in the zero-shear viscosity. Assuming that crystallization
has been suppressed by polydispersity, the volume fraction
can then be further increased, eventually resulting in an
apparent divergence of the zero-shear viscosity, either at the
glass transition volume fraction (according to mode-coupling
theory [10, 96]), or some higher volume fraction approaching
random-close-packing [97]. The variation of the viscosity as
a function of shear rate for volume fractions ranging from
0.45 to 0.57 is demonstrated in more detail by the data shown
in figure 8. These experiments were performed on a system
of poly(ethylene glycol)-grafted polystyrene colloidal particles
dispersed in water [134]. For the two lowest volume fractions
considered (φ = 0.45 and 0.48) a clear zero-shear viscosity
may be identified from the low shear rate plateau, with shear
thinning evident at higher shear rates for φ = 0.48. As the
volume fraction is increased above 0.48 the low shear rate
plateau moves to smaller rates, out of the experimental window
of resolution, and the dispersion shows shear thinning over
the entire range. Analysis of the intensity correlation function
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Figure 8. Shear thinning and the dynamic yield stress of a
concentrated aqueous dispersion of poly(ethylene glycol)-grafted
polystyrene colloidal particles which, to a good approximation,
behave as hard-spheres. The main figure and inset show the viscosity
and shear stress, respectively, as a function of shear rate. (Reprinted
with permission from [134]. Copyright 2005 by the American
Physical Society.)

(related to the transient density correlator (20)) measured using
dynamic light scattering leads to an estimate of the glass
transition for this system of 0.53 < φg < 0.55, somewhat
lower than the typical value φg ∼ 0.58 obtained for PMMA
hard-sphere-like colloids. The viscosity data for the two
highest volume fractions (φ = 0.55 and 0.57) are consistent
with a divergence in the zero-shear viscosity at the glass
transition, as predicted by the MCT (see section 5.1).

According to the extended MCT [20, 57, 135], for glassy
states the slowest relaxation time is τα ∼ γ̇−1, which leads, via
equation (22), to η ∼ G(t → ∞)γ̇−1, where G(t → ∞) is
the plateau modulus (see figure 5), thus reproducing the power
law decay of the viscosity demonstrated by the data in figure 8.
For the idealized glassy states considered by MCT, where τα

is infinite in the absence of flow, this power law dependence
extends to the limit γ̇ → 0, resulting in a true divergence. In
real colloidal experiments, higher order relaxation processes
will always endow the quiescent system with a finite value
of τα and the viscosity divergence will be truncated. The
low shear divergence of the viscosity and power law shear
thinning η ∼ γ̇−1 suggested by figure 8 are supported by
independent experiments performed on thermosensitive core–
shell particles [60, 61]. However, some recent experiments
on sterically stabilized PMMA particles provide contradictory
evidence and have suggested a nontrivial dependence of the
relaxation time on shear rate, namely τα ∼ γ̇−0.8, which
remains to be understood [136].

The inset to figure 8 shows the shear stress as a function
of shear rate and provides an alternative representation of the

viscosity data shown in the main panel. For the two highest
volume fraction samples (φ = 0.55 and 0.57) the shear stress
becomes constant for the lowest shear rates considered, thus
identifying a dynamic yield stress for glassy states. Both the
shear thinning as a function of Pe and appearance of a dynamic
yield stress as a function of φ evidenced by figure 8 are well
described by the extended MCT [60, 61].

The relationship between the dynamic yield stress and
the more familiar static yield stress mirrors that between stick
and slip friction in engineering applications (σ stat

y > σ
dyn
y

is thus to be expected). Indeed, it may be argued that the
dynamic yield stress is, in fact, a more well defined quantity
than the static yield stress. The latter is typically defined as
the step stress amplitude which must be exceeded such that the
system will flow at long times9. The point of static yield may
therefore be dependent upon details of the system preparation,
with the consequence that nonstationary properties, such as
sample age in colloidal glasses, could influence the outcome of
a given experiment10. Moreover, the existence of creep motion,
for which the strain increases sublinearly with time, makes
difficult an unambiguous identification of the static yield stress.
In contrast, the dynamic yield stress is defined as the limiting
stress within a sequence of ergodic, fluidized steady states and
is thus independent of prior sample history.

It is apparent from equation (22) that a dynamic yield
stress can only exist in the event that τα ∼ γ̇−ν , with
ν = 1. Values of ν less than unity result in a shear
stress σxy(γ̇ → 0) = 0, despite the fact that the viscosity
diverges. We thus note that a low shear rate divergence of
the viscosity is a necessary but not sufficient condition for
the existence of a yield stress. While the results presented
in [136] apparently cast doubts on the existence of a dynamic
yield stress for certain colloidal glasses, complications due to
inhomogeneous, shear localized flow make this a subject of
ongoing debate [137].

The interplay between static and dynamic yield has
been investigated in simulation studies of a glass forming
binary Lennard-Jones mixture (the Kob–Anderson model)
using molecular dynamics simulations [138, 139]. In these
simulations the mixture was confined between two atomistic
walls, one of which was then subjected to either a constant
stress or constant strain in order to induce shear flow. It is
important to note that due to the application of shear through
the boundaries, the flow profile within the confined fluid/glass
is an output of the numerical calculation and is not constrained
to be linear.

In figure 9 we show the simulated flow curve for this
system (analogous to that shown in the inset to figure 8) for
a glassy statepoint, calculated by applying a fixed rate-of-
strain to one of the bounding walls [138, 139]. When the

9 We note that there exist numerous alternative definitions of the ‘yield stress’
in the literature. Two common choices are: (i) the maximum value of the stress
overshoot which occurs in response to the onset of steady shear flow, (ii) the
point for which G ′ = G ′′ as a function of amplitude for fixed frequency in
oscillatory experiments (strain sweeps).
10 This expectation is supported by the simulations performed in [138] which
found that the maximum of the stress–strain curve during start-up shear flow,
often identified as the static yield stress, exhibits a logarithmic dependence on
the age of the system.
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Figure 9. Molecular dynamics simulation results for a glass forming
binary Lennard-Jones mixture. The full line shows the shear stress as
a function of the total shear rate under conditions for which a
constant rate-of-strain is applied to one of the bounding walls. The
square (labelled σy) indicates the static yield stress obtained by
sequentially increasing the applied stress until the system begins to
exhibit viscous flow. For values of the stress between dynamic and
static yield points, the system was found to exhibit inhomogeneous
flow. (Reprinted with permission from [138]. Copyright 2004,
American Institute of Physics.)

shear stress is plotted as a function of the total strain rate
(which may differ from the local rate-of-strain) a dynamic
yield stress can clearly be identified. It was observed in
the simulations that at sufficiently low (total) shear rates,
an inhomogeneous flow profile develops in which a static
layer coexists with a fluidized region exhibiting a linear flow
profile. In a complementary set of simulations a lower bound
for the static yield stress was identified by slowly (stepwise)
increasing the shear stress until viscous flow could be detected
at long times. The static yield stress thus obtained was found to
provide a criterion for determining the onset of inhomogeneous
flow. These observations may be consistent with experiments
on PMMA colloids exhibiting inhomogeneous flow [136] but
are apparently at odds with experiments on core–shell particles
which do not give indications of banding or shear localization
effects [60, 61, 134]. While these discrepancies remain to be
understood, it seems possible that the softness of the potential
interaction in the core–shell systems studied in [60, 61, 134]
may play a role in maintaining homogeneous flow.

6. Theoretical approaches to fluid states

There currently exist several alternative theoretical approaches
to first-principles calculation of the microstructure and
macroscopic rheology of colloidal dispersions subject to
externally applied flow. Each of the available approximation
schemes is tailored to capture the physically relevant
aspects of the correlated particle motion within a restricted
range of volume fractions. Theories aiming to treat low

and intermediate volume fraction dispersions take as their
common starting point the pair Smoluchowski equation,
which is an exact coarse-grained reduction of the many-
body Smoluchowski equation (14). At high volume
fractions close to the glass transition the pair Smoluchowski
equation no longer provides a convenient starting point
and an alternative approach capable of capturing slow
structural relaxation is required. This is provided by
the recently developed integration through transients mode-
coupling theory [16, 17, 20, 135]. In the following, we will first
introduce the pair Smoluchowski equation before proceeding
to follow the ‘volume fraction axis’ to give an overview of the
current state of research on the theory of flowing states.

6.1. The pair Smoluchowski equation

While equation (14) provides a well defined microscopic
dynamics, it has been found useful to start from an
equivalent coarse-grained level of description by integrating
out unnecessary degrees of freedom from the outset. Assuming
spatial translational invariance, integration of equation (14)
over the centre-of-mass coordinate of a pair of particles and
the remaining N − 2 particles leads to an equation for the flow
distorted pair correlation function as a function of r = r2 − r1

(see e.g. [56, 140–142])

∂g(r)
∂ t

+∇r · [v(r) g(r)− D(r) ·∇r g(r)]
= −∇r · [D(r) ·β F(r) g(r)] (24)

where we have suppressed explicit time-dependence in the
function arguments for notational convenience and where
we have introduced the gradient operator ∇r = ∇2 − ∇1.
The conditional probability to find particles at coordinates
r3 · · · rN, given that the first two are known to be at locations
r1 and r2, respectively, is given by P(r3, . . . , rN|r1, r2) =
P(r1, . . . , rN)/P(r1, r2) and is required to calculate the
functions F(r),D(r) and v(r) entering equation (24). The first
of these functions, F(r), describes the force acting between
our chosen pair of particles due to both direct potential
interaction v(r), taken here to be pairwise additive, and indirect
interactions transmitted via the surrounding N − 2 particles

F(r) = −∇r v(r)− n

2

∫
dr3

g(3)(r1, r2, r3)

g(r1, r2)

× (∇2v(|r2 − r3|)−∇1v(|r1 − r3|)), (25)

where g(3)(r1, r2, r3) is the nonequilibrium triplet distribution
function. The diffusion tensor is similarly obtained by
conditional averaging and contains details of the hydrodynamic
interactions

D(r) = 2D0

( rr
r 2

G(r)+
(
δ − rr

r 2

)
H (r)

)
, (26)

where rr denotes a dyadic product and the scalar hydrody-
namic functions G(r) and H (r) remain to be specified. Finally,
the relative velocity of a pair of particles is given by

v(r) = κ · r+ C(r) : κ̄ (27)

where κ̄ is the symmetric rate-of-strain tensor κ̄ = (κ +
κT)/2 and C is the (third rank) hydrodynamic resistance tensor
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describing the disturbance of the affine flow due to the presence
of the particles

C(r) : κ̄ = −r

(
rr · κ̄ · r

r 3
A(r)+

(
δ− rr

r 2

)
· κ̄ · r

r
B(r)

)
. (28)

The tensorC arises from purely geometrical considerations and
is not material specific. It is interesting to note that the addition
of hydrodynamic interactions prevents advection leading to
unphysical hard-core overlap. A pair of approaching particles
thus ‘flow around’ each other in the solvent flow, an effect
taken care of by the second term in equation (27).

In the dilute limit, much is known about the hydrodynamic
functions A, B, G and H , as only an isolated pair of spheres
must be considered. For both large and small separations
analytical expressions for these functions exist [47] and are
supplemented by tabulated numerical data for intermediate
ranges [143]. At higher volume fractions approximations are
required to obtain the hydrodynamic functions and a number
of schemes have been developed which aim to incorporate the
effects of many-body hydrodynamics [27, 49, 95, 144, 145].
In the absence of hydrodynamic interactions A = B = 0
and G = H = 1 leading to considerable simplification. It
should be noted that C = 0 in this limit, with the consequence
that affine motion alone can lead to hard-core overlaps. While
an exact treatment of the thermodynamic part of the problem
would lend such unphysical configurations zero statistical
weight, care must be exercised in approximate treatments
which may satisfy only partially this important geometrical
constraint.

Although the coarse-grained pair Smoluchowski equa-
tion (24) is still exact (under the assumption of homogeneity),
it does not provide a closed expression for the microstructure,
as encoded in g(r). Evaluation of the integral term required to
determine the force (25) demands knowledge of the nonequi-
librium triplet distribution function, which remains unknown
and contains the residual influence of the surrounding particles
which have been integrated out. This situation is familiar from
the BBGKY hierarchy [15] for which the triplet correlations
must be approximated in terms of the pair correlations (using
e.g. the Kirkwood superposition approximation) in order
to arrive at a closed equation. In recent years, accurate
approximations for the equilibrium triplet correlations of
certain model systems have been developed [146, 147]. Less
is known regarding the nature of the triplet correlations in
nonequilibrium situations. Recent simulations [149] using
accelerated Stokesian dynamics [41, 50] have revealed the
existence of aligned particle triplets under shear and it may be
hoped that such microstructural insights will eventually lead to
improved theories by guiding the development of approximate
closures for the triplet correlations. Some of the approaches to
be reported in section 6.3 have attempted to make progress in
this direction by approximating explicitly the integral term on
the right-hand side of (24).

We note that, although the assumption of spatial
homogeneity underlying (24) is mathematically convenient
(for a translationally invariant system the only physically
relevant coordinate is the separation vector r = r2 − r1), it
may not be appropriate under all conditions. The presence

-4 -2 0 4

x/R
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2

y
/R

2

Figure 10. For mathematically perfect hard-spheres with a
hydrodynamic radius equal to the radius of potential interaction,
RH = R, particle pairs exhibit well defined trajectories. Taking a
reference frame in which one particle is fixed at the origin (yellow)
the second particle (red) follows the trajectories shown in the ‘pure
hydrodynamic limit’ of large Pe [30]. The figure shows some
sample trajectories in the z = 0 flow–gradient plane (see e.g. [6]).
Closed orbits are indicated in red and open in black. The apparent
fore–aft mirror symmetry gives rise to Newtonian rheology.

of spatial inhomogeneity induced by either external potential
fields, shear banded or shear localized states complicates the
coarse graining procedure, resulting in an inhomogeneous
version of (24). While these issues should pose no difficulty
at low volume fractions, for which the right-hand side of (24)
may be disregarded, caution should be exercised when treating
systems at higher volume fraction.

Once g(r) is known, calculation of the stress tensor
describing the macroscopic rheological response becomes
possible. Although exact expressions relating the stress
tensor to the flow distorted microstructure are known
formally, the situation is complicated by the appearance
of unknown conditionally averaged hydrodynamic functions
in the expressions. However, reliable approximations for
these functions are available and enable the stress to be
evaluated directly from g(r) [27]. For the simpler case
of a system interacting via a pair potential and in the
absence of hydrodynamic interactions, the stress tensor may
be completely determined by a simple integral over the pair
correlation function [148]

σ = −nkBT1+ 5ηsφ κ̄ − n2

2

∫
dr
rr
r

v′(r)g(r), (29)

where v′(r) is the derivative of the pair potential, ηs the
solvent viscosity, 1 the identity matrix and rr denotes a dyadic
product. Note that the second term on the right-hand side of
equation (29) assumes that the particles possess a well defined
hard-core from which the solvent is excluded.

In the absence of flow the stress tensor is diagonal with
the osmotic pressure given by � = −Tr σ/3. For a
system of pure hard-spheres the familiar equation of state
β �/n = 1 + 4φg(d) is thus recovered. When under shear
flow equation (29) yields a shear viscosity due to the colloids
η = 5 φ ηs/2 + O(φ2), where the first term corresponds to
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Figure 11. The pair contributions to the relative shear viscosity of a
dilute colloidal dispersion under steady shear flow for three values of
the ratio R/RH (see figure 7). To second order in φ the relative
viscosity is given by ηr ≡ η/ηs = 1+ 5φH/2+ A(Pe, R/RH) φ2,
where φH = (RH/R)3 φ, and A(Pe, R/RH) can be divided into
hydrodynamic and Brownian contributions A = AH + AB. As
R/RH → 1 the dispersion shows shear thickening at large Pe values
due to the increase in the hydrodynamic contribution to the shear
stress. As the value of R/RH is increased the increase in AH becomes
balanced by the decrease in AB and only shear thinning remains.
(Figure adapted from [133].)

Einstein’s classic dilute limit result [150] and the corrections
to higher order in φ come from the anisotropy of g(r) inside
the integral term. It is clear from equation (29) that flow
induced microstructural anisotropy can give rise to the finite
normal stress differences N1 = σxx − σyy and N2 = σyy − σzz

characteristic of non-Newtonian rheology. The dyadic weight
factor entering the integral term has the consequence that if
g(r) possesses a mirror symmetry about the x = 0 plane then
the integral term will be equal to zero and the rheology will
thus be Newtonian. While this ‘fore–aft’ symmetry of the pair
distribution function is an exact mathematical consequence of
the ‘pure hydrodynamic limit’, in which the motion of the
particles is determined by Stokes flow alone [151, 152], chaotic
many-body particle motion and experimental perturbations,
such as particle surface roughness, present in real colloidal
systems break the symmetry and result in a non-Newtonian
rheology [56].

6.2. Low volume fraction

Efforts to obtain a microscopic understanding of colloid
rheology began with the seminal 1906 work of Einstein in
which it was shown how the shear viscosity of a dilute
dispersion of hard spherical colloids increases with colloidal
volume fraction, assuming that both the volume fraction and
the shear rate remain small (η = ηs(1 + 5φ/2)) [150].
Einstein’s study addressed the one-body problem of a single
colloid suspended in a Newtonian fluid. The next step is

naturally to consider the interaction between pairs of colloidal
particles, thus making possible a discussion of the pair
correlation functions and their relation to rheological functions
at low volume fraction. Study of the two-particle dilute limit
was initiated by Batchelor [30, 151–153] whose fundamental
work formed the basis for the more recent investigations by
Brady and co-workers [56, 133, 154].

At low volume fraction, equation (24) admits analytical
solution in the limits Pe → 0 and ∞ [56, 154] and
precise numerical results have been obtained for intermediate
values of Pe, both with and without hydrodynamic
interactions [133, 157]. Exact results are made possible by
the fact that, in the dilute limit, triplet correlations in the pair
Smoluchowski equation may be neglected leading to a closed
expression for g(r). Neglecting the difficult integral term in
equation (24) incurs an O(φ) error which becomes irrelevant as
φ → 0 and yields a closed equation for g(r) which is exact to
lowest order in the volume fraction and valid for all Pe values.
For the simple special case of hard-spheres equation (24) thus
reduces to the equation-of-motion

∂g(r)
∂ t

+∇r · [v(r)g(r)− Pe−1D(r) ·∇g(r)] = 0, (30)

where we have scaled distance and time with particle radius
and flow rate, respectively, such that Pe appears explicitly.
In order to fully specify the problem equation (30) must be
supplemented with appropriate boundary conditions enforcing
both the requirement that the particles do not penetrate, via
a no-flux condition at r = d , and that g(r) → 1 as
r → ∞ [6]. The first of these boundary conditions is
clearly an exact physical requirement and is valid also at higher
volume fractions. The second condition assumes the decay of
‘wake’ structures which develop in g(r) downstream from the
reference particle at higher flow rates. Detailed analysis of (30)
has shown that the range of the wake scales linearly with Pe,
thus justifying the choice of boundary conditions.

For systems interacting via a spherically symmetric pair
potential it can be shown that, regardless of volume fraction,
in the weak flow limit Pe → 0 a steady flow field acts on
the spherically symmetric equilibrium distribution geq(r) to
produce an O(Pe) perturbation [6, 153]

g(r) = geq(r)

[
1− Pe

r · κ̂ · r
r 2

f (r)

]
, (31)

where κ̂ = κ̄/
√

2κ̄ : κ̄ , with κ̄ is defined below equation (29).
In the dilute limit geq(r) = �(−r − 1) and substitution of (31)
into (30) yields a differential equation for the dimensionless
function f (r) which has been solved for several interaction
potentials of interest [6]. Although analytical expressions
exist for certain systems, a numerical integration is still
required to obtain f (r) in the special case of hard-spheres with
hydrodynamic interactions [6, 153].

The extension of equation (31) to higher order in the Peclet
number has been analysed in considerable detail [154]. It can
be shown that g(r) has a regular perturbation expansion to
O(Pe2) but that calculation of the next order term requires
singular perturbation theory, yielding an O(Pe5/2) correction.
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The calculation of higher order terms in the Pe expansion
requires use of matched asymptotic expansions which rapidly
become intractable and make preferable a numerical solution
of (30). The expansion of the distorted structure is given
by [154]

g(r) = 1+ f1 Pe + f2 Pe2 + f5/2 Pe5/2 + · · · , (32)

where comparison with (31), and noting that geq(r > 2R) = 1
for hard-spheres at low volume fraction, enables identification
of the coefficient f1. To O(Pe) the rheology is predicted to
be Newtonian with normal stress differences identically equal
to zero [30]. Non-Newtonian rheology first occurs at O(Pe2),
which is sufficient to capture both nonzero normal stresses and
the first flow induced correction to the osmotic pressure [154].

Analytic solutions to equation (30) exist also in
the ‘pure hydrodynamic limit’ of strong flows (Pe →
∞) and have highlighted the subtle balance between
hydrodynamic and potential forces in determining the
rheological response [30, 152]. For large Peclet number steady
flows the solution of equation (30) is well approximated by the
solution of the simplified equation ∇ · [v(r) g(r)] = 0 (subject
to the boundary condition g(r) = 1 at r =∞), despite the fact
that the approximation neglects the boundary layer and thus
violates the no-flux condition at contact. Subject to certain
conditions on the trajectories of particle pairs, Batchelor and
Green proved the surprising result that the simplified equation
predicts a spherically symmetric radial distribution function for
hard-spheres, leading to Newtonian rheology [152]. This clear
prediction is a direct consequence of the fore–aft symmetry
of g(r) (see section 6.1) inherent in the assumed Stokesian
solvent flow. In figure 10 we show sample trajectories of a
hard-sphere in shear flow as it moves around a second sphere
held fixed at the coordinate origin. Of particular interest is
the existence of closed trajectories along which the particles
become trapped in bound orbits and which are connected to
the lubrication force required to displace solvent from the
region between the particles [47]. In fact, the lubrication
force acting between a pair of perfect spheres at separation
r shows a divergence, Flub ∼ (r/R − 2)−1, corresponding
to surface contact. Crucially, the time-reversibility of the
Stokes equations dictating the solvent flow implies that the
force required to push particles together is identical to that
required to pull them apart, with the consequence that particle
trajectories exhibit the fore–aft mirror symmetry apparent in
figure 10.

Despite the sound mathematical evidence provided
in [152], serious doubts were cast by subsequent experiments
on intermediate volume fraction hard-sphere-like colloidal
dispersions, which seemed to contradict the theoretical
predictions by identifying a non-Newtonian rheology at large
flow rates [155]. It should be noted that the reversibility
of Stokes flow implies that fore–aft symmetry in the pure
hydrodynamic limit holds also for finite volume fractions and
so the value φ = 0.4 employed in the experiments of [155]
cannot be held responsible for the apparent discrepancy.
The situation was eventually resolved by Brady and Morris,
who analytically identified a boundary layer in the region
close to particle contact in which Brownian motion balances

advection [56]. The analysis of [56] indeed recovers the
findings of [152] in the case that the hydrodynamic radius
is equal to the excluded volume radius, as would be the
case for mathematically perfect hard-spheres with no surface
roughness. However, when the excluded volume radius
exceeds the hydrodynamic radius, even by a very small
amount, the residual Brownian motion within the anisotropic
boundary layer of g(r) leads to a non-Newtonian rheology in
the strong flow limit. Figure 7 shows a sketch of the model
employed in [56]. The physical origin of these symmetry
breaking surface effects remains an open problem and is
likely to be a function of various system specific parameters
(e.g. surface roughness). We note that the existence of a
boundary layer structure was originally identified in studies of
the distorted structure factor of colloids under shear [156].

The analytical results for Pe → 0 and ∞ for
hard-spheres under steady shear have been both confirmed
and supplemented by full numerical solutions at all values
of Pe [133, 157]. These accurate numerical studies
revealed that the dilute dispersions described by equation (30)
demonstrate not only shear thinning and finite normal stresses
at intermediate flow rates (accessible from the expansion (32)
to O(Pe2)), but also shear thickening at high flow rates [133].
Shear thinning in dilute systems is correlated with a
nonvanishing distortion of the structure factor in the plane
perpendicular to the flow direction [158].

In figure 11 we show some of the numerical results
obtained in [133] for the shear viscosity of a dilute dispersion
as a function of Pe. In these calculations the effective sphere
model sketched in figure 7 was employed and results are shown
for three values of the ratio of potential to hydrodynamic
radius, R/RH. To second order in φ the relative viscosity may
be expressed as

ηr ≡ η/ηs = 1+ 5 φH/2+ A(Pe, R/RH) φ2, (33)

where φH = (RH/R)3 φ is the volume fraction with respect
to the hydrodynamic radius and the function A(Pe, R/RH)

contains the effects of microstructural distortion (note that
calculation of g(r) to O(φ) yields the viscosity to O(φ2)).
The numerically determined function A(Pe, R/RH) may be
further split into hydrodynamic and Brownian contributions,
A = AH + AB, which are independently accessible from the
numerical calculations of [133].

The top panel of figure 11 shows A as a function of Pe.
For shear rates up to Pe ∼ 1 the qualitative variation of the
viscosity is independent of the value of the size ratio R/RH,
displaying a low shear Newtonian plateau followed by shear
thinning. The R/RH independence of the form of the curves
for Pe < 1 reflects the fact that hydrodynamic interactions
are not central to the mechanisms underlying shear thinning
and only influence the absolute value of the viscosity. For
Pe > 1 the viscosity begins to increase as a function of Pe
and the dispersion shear thickens. In contrast to the shear
thinning behaviour, the viscosity increase is strongly sensitive
to the value of R/RH. In the limit R/RH → 1 the trajectories
sketched in figure 10 are recovered and Batchelor’s pure
hydrodynamic limit is realized with a viscosity independent of
Pe. In [133] it is also shown that for R/RH → 1 the normal
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stresses also vanish as Pe → ∞, indicating a Newtonian
response. As R/RH is increased the magnitude of the shear
thickening reduces strongly and by R/RH = 1.1 is lost
entirely. This trend strongly indicates the important influence
of short range lubrication forces on shear thickening (see
section 5.3), which can effectively be turned-off by slightly
reducing the hydrodynamic radius below that of the repulsive
potential interaction.

The central and lower panels of figure 11 show the
individual hydrodynamic and Brownian pair contributions to
the total stress as a function of Pe. For Pe < 1 it is apparent
that the shear thinning is due to a reduction in the Brownian
contribution with increasing Pe. For values of R/RH close
to unity the reduction in AB is more than compensated
by an increase in the hydrodynamic stress afor Pe > 1,
leading to shear thickening. However, increasing R/RH above
unity rapidly suppresses the influence of lubrication and the
hydrodynamic contribution is overwhelmed by the strong drop
in AB.

Comparing the first panel of figure 11 with figure 4, it
is remarkable the extent to which the qualitative rheological
response observed in systems at finite volume fraction is
reproduced by calculations based on the dilute limit. However,
the fact that Wi = Pe at low volume fractions does
not permit investigation of potentially interesting interaction
effects between shear thinning and thickening. Despite the
extensive understanding of the response of dilute dispersions
to steady flows, analogous solutions for time-dependent flows
remain to be investigated. This leaves open many interesting
questions regarding transient response and nonsteady states.

6.3. Intermediate volume fraction

The simplest way to extend the dilute limit results to finite
volume fraction is via the introduction of empirical volume
fraction dependent scale factors [56, 145, 154, 160]. Analysis
of equation (30) has provided two important insights. Firstly, at
finite volume fractions the value of g(r) outside the boundary
layer close to the surface of a reference particle should
asymptote to the solution of ∇ · [v(r) g(r)] = 0, for which
the no-flux boundary condition is ignored. This amounts to
assuming that, outside the thin boundary layer, it is sufficient
to solve a purely advective problem. Secondly, that the
appropriate Peclet number in the presence of hydrodynamics is
PeH = γ̇ R2/2Ds(φ), where Ds(φ) is the short-time diffusion
coefficient (which differs from D0 due to hydrodynamic
interactions with neighbouring particles). For weak flows
(Pe � 1) these ideas are manifest in a modified perturbation
to the quiescent pair correlations

g(r) = geq(r)

[
1− PeH

r · κ̂ · r
r 2

f (r)

]
. (34)

The finite volume fraction equilibrium radial distribution
function geq(r) is an external input to the theory and can
be calculated using either simulation or equilibrium integral
equation theory [15]. The function f (r) is determined by
substitution of (34) into the dilute limit equation (30), or
its generalization for non-hard-sphere potentials. Many-body

effects are thus included via the equilibrium radial distribution
function and the short-time diffusion coefficient entering PeH.
It should be noted that Brady’s approach assumes an input
geq(r) which diverges at random-close-packing (φ ≈ 0.64).

Despite considerable success, the scaling approach suffers
from two significant drawbacks. (i) The mathematical structure
of the nonequilibrium part of the theory is that of the dilute
system. Thus, regardless of rescaling, this approach does
not admit the occurrence of possible additional physical
mechanisms which may only occur as a consequence of
cooperative behaviour at finite volume fraction. (ii) The
equilibrium microstructure geq(r) is required as an external
input and does not emerge from an approximate treatment of
many-body correlation effects within the theory. These issues
may be addressed by approaches which aim to approximate
the triplet distribution function entering the pair Smoluchowski
equation (24) via the effective force between a pair of
particles (25). In order to arrive at a closed theory it
is necessary to relate g(3)(r1, r2, r3), either explicitly or
implicitly (by approximating weighted integrals over the triplet
distribution), to g(r) and the pair potential v(r) using an
appropriate ‘closure’ hypothesis.

6.3.1. Superposition approximation. Guidance in developing
an appropriate closure relation to treat nonequilibrium states is
provided by experience from equilibrium liquid state integral
equation theory. One of the earliest approximation schemes
aiming to arrive at a closed equation for the equilibrium
pair correlations was developed by Born and Green [161]
who employed the Kirkwood superposition approximation
g(3)(r1, r2, r3) ≈ g(r12)g(r23)g(r13) in combination with the
second member of the exact Yvon–Born–Green hierarchy
(equation (37)) [15, 162]. Numerical solution of the resulting
Born–Green equation yields acceptable results only for weak
coupling. The superposition approximation is asymptotically
correct for large particle separations but is poor when particles
come close to contact, leading to a failure of the Born–
Green equation at intermediate volume fractions (a breakdown
which was erroneously taken as an indicator for the first
order freezing transition of hard-spheres). Subsequent attempts
have aimed to systematically improve upon the superposition
approximation by including additional Mayer cluster diagrams
(see e.g. [163]).

One of the earliest attempts to close the nonequilibrium
equation (24) using the superposition approximation, albeit in
the absence of hydrodynamics, was made by Ohtsuki [164]
(self-diffusion was addressed using an analogous approach
in [165]). Numerical solution of the closed integro-differential
equation resulting from this approximation was performed
for charged hard-spheres at intermediate volume fraction.
Although the theoretical results for the zero-shear viscosity
were found to be in reasonable agreement with those of
experiment, the pair correlation g(r) was found to be in
considerable error. These findings are supported by the work
of Wagner and Russel who investigated a similar superposition
based approach [140].

The observed discrepancies in g(r) arising from super-
position are not surprising: in equilibrium, the pair flux in
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equation (24) may be set equal to zero, resulting in an exact
equation for the pair correlation function

kBT ∇r ln geq(r) = F(r), (35)

where F(r) is given by equation (25) and contains the
unknown triplet distribution function. Use of superposition
to approximate g(3)(r1, r2, r3) in equation (25) leads directly
to the Born–Green equation for the equilibrium correlations,
the shortcomings of which have been noted above. It is
therefore nontrivial that, despite a relatively poor description
of the microstructure, the results for the zero-shear viscosity
presented in [164] turn out to be rather good agreement with
experimental data. A similar situation is encountered in a
number of the theories to be outlined in this section and serves
to highlight the fact that good values for integrated quantities
(e.g. the viscosity) do not necessarily imply that the underlying
correlations are treated adequately.

When applying superposition to tackle nonequilibrium
problems it should be borne in mind that the approximation
represents an uncontrolled ansatz and only possesses a
firm statistical mechanical basis in the limit of vanishing
flow rate. In equilibrium, the superposition approximation
represents both the exact low volume fraction limit of the
triplet correlation function and recovers correctly the long
range asymptotic behaviour. Analogous limiting results for
the nonequilibrium triplet correlations which could motivate
a more appropriate superposition-type approximation are
currently lacking and would require a detailed analysis of the
triplet Smoluchowski equation in the dilute limit. Despite these
shortcomings, superposition may nevertheless turn out to be
useful for some applications. As noted at the end of section 5.2,
very recent simulation results investigating the microstructure
of hard-sphere fluids under shear flow revealed the importance
of linear triplet configurations [104]. From equilibrium studies
it is known that the error of the superposition approximation is
reduced for such linear configurations [166], thus raising the
interesting possibility that superposition may be appropriate
for treating certain nonequilibrium states.

6.3.2. Potential of mean force. Inspection of the exact
expression for the force (25) shows that only a certain weighted
integral of the triplet distribution is required to determine the
pair correlations. It is thus not strictly necessary to know
the full details of the triplet distribution and schemes can be
developed which aim to approximate directly the integrated
quantity. The simplest approximation possible is to neglect
entirely the integral contribution to the effective force (25) and
set

F(r) = −∇r v(r). (36)

Combining this crude approximation with equation (24)
recovers the dilute limit equation-of-motion for g(r) for an
arbitrary spherically symmetric pair potential v(r). For the
special case of hard-spheres this leads to equation (30), but
with an additional delta function term on the right-hand side.
As demonstrated by Cichocki [167] the resulting equation
is completely equivalent to (30), with zero right-hand side,
supplemented by a no-flux boundary condition at contact.

As already noted, in equilibrium the pair Smoluchowski
equation (24) reduces to the Yvon–Born–Green equation for
the pair correlations

kBT ∇r ln geq(r) = −∇r v(r)− n

2

∫
dr3

g(3)
eq (r1, r2, r3)

geq(r1, r2)

× (∇2v(|r2 − r3|)−∇1v(|r1 − r3|))
≡ −∇vmf(r), (37)

where vmf(r) is the equilibrium potential of mean force [15],
defined by geq = exp(−βvmf) in analogy with the low density
limit of the pair correlations. A first step towards improving
the zeroth order approximation (36) is thus to approximate the
nonequilibrium force (25) by the equilibrium potential of mean
force, leading to

F(r) = −kBT ∇r ln geq(r). (38)

This approximation, developed by Russel and Gast [141], in-
corporates equilibrium thermodynamic many-body couplings
but, as is clear from equation (37), neglects the influence of
flow on the triplet correlations. It should be noted that the
approximation (38) does not provide any information regarding
the nonequilibrium triplet correlation function. This is in
contrast to superposition based approaches from which the
triplet function can be reconstructed using a product of the
self-consistently determined pair correlation functions. It
should also be noted that within the Russel–Gast approach
the function geq(r) is an input, which can be calculated
using either simulation or equilibrium statistical mechanical
approximations (see section 6.3.3).

The linear equation resulting from combining equa-
tions (24) and (38) has been solved for hard-spheres in weak
shear flow [141]. In these calculations, simple approximations
were employed to determine the hydrodynamic functions
A, B, G and H entering equations (26) and (28) defining the
conditionally averaged hydrodynamic tensors which represent
the effective medium (solvent + (N − 2) colloids) in
which the chosen pair of particles are immersed. Results
were obtained for the zero-shear viscosity, linear response
moduli G ′(ω), G ′′(ω) under small amplitude oscillatory shear
and the leading order flow induced distortion of g(r) (via
determination of the function f (r), see equation (31)). For
φ < 0.3 good agreement with experiment was obtained for the
integrated quantities η0, G ′ and G ′′, despite providing only a
poor description of the microstructure (see figure 6 in [168]).

An interesting feature of the Russel–Gast theory is that
the predicted zero-shear viscosity becomes very large in
the vicinity of random-close-packing (φ ≈ 0.64), although
the precise nature of this rapid increase as a function of
volume fraction remains to be studied in detail. The apparent
divergence of η0 is a nontrivial output of the theory, given that
the approximate Verlet–Weiss expression for geq(r) used as
input diverges only at φ = 1.0 [169]. When viewed within
the context of the time correlation/Green–Kubo formalism (see
section 5.1) it is tempting to infer that the observed growth
in η0 is related to the development of an underlying slow
structural relaxation time. The solution of equation (38) for
small amplitude oscillatory shear at finite frequencies would
enable this issue to be addressed.
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6.3.3. Equilibrium integral equations. The Russel–Gast
theory outlined above neglects the influence of external
flow on the triplet correlation function, which leads to a
force F(r) generated from the equilibrium potential of mean
force (equation (38)). In order to go beyond this close-
to-equilibrium ansatz it is necessary to express the force
F(r) as a functional of g(r), such that both functions can
be determined self-consistently. A promising approach in
this direction is to generalize equilibrium liquid state integral
equation theory [15] to treat the nonequilibrium problem. It
will thus be useful to review briefly some concepts from
the equilibrium theory before moving on to more unfamiliar
territory in section 6.3.4.

Integral equation theories generally aim to calculate the
equilibrium pair correlation function geq(r) from knowledge
of the interaction potential in a non-perturbative fashion.
Fundamental to the integral equation approach is the Ornstein–
Zernike (OZ) equation which, for a translationally invariant
system, is given by the convolution form [15]

heq(r12) = ceq(r12)+ n
∫

dr3 ceq(r13)heq(r32), (39)

where heq(r) = geq(r) − 1. The direct correlation function
ceq(r) defined by (39) is a function of simpler structure
than heq(r) and is thus easier to approximate. When
supplemented by an independent closure relation between
ceq(r) and heq(r), containing details of the interaction potential
under consideration, (39) provides a closed equation for the
pair correlations (note that for pairwise additive potentials the
triplet distribution does not enter explicitly). The task of
the integral equation practitioner is thus to find numerically
tractable closures which capture the essential physics of the
problem under consideration.

Using diagrammatic techniques [170] it can be shown that
a formally exact closure relation is given by

geq(r) = exp[−βv(r)+ heq(r)− ceq(r)+ beq(r)], (40)

where beq(r) is the unknown ‘bridge function’ containing the
difficult to evaluate ‘irreducible’ Mayer cluster diagrams [15].
Two closures of particular merit are the hypernetted-chain
(HNC) and Percus–Yevick (PY), given by

beq = 0 (HNC) (41)

beq = − ln(1+ heq − ceq)− (heq − ceq) (PY) (42)

respectively. An additional practical advantage of theories
based on (39) over superposition-type approaches is that the
convolution form of the integral term enables self-consistent
solutions to be obtained using efficient iterative numerical
algorithms [171].

Although the majority of integral equation theories focus
on the pair correlations, triplet correlations can also be handled
within the same framework [147]. In addition to providing
a higher level of resolution, the development of triplet-
level integral equations is motivated by the desire for an
improved description of the pair correlations. Exact relations,
such as the YBG equation (37), connect the triplet to the

pair correlations and the expectation is that errors in an
approximate g(3)

eq may be averaged out by integration to the pair
level. During the mid-1960s many of the leading liquid state
theorists proposed integral equations for the triplet correlations
(e.g. Verlet [172–176], Wertheim [177], Baxter [178],
Stell [179]), all of which showed considerable promise.
However, the complexity of solving the equations has hindered
progress along this route and somewhat simpler, numerically
tractable, theories now seem preferable [146, 147, 180].

An integral equation which will be of particular relevance
for section 6.3.4 was derived by Scherwinski [181]. Within the
Scherwinski approximation the triplet correlation function is
obtained from self-consistent solution of the following linear
equation

geq(r1, r2, r3) = geq(r12)geq(r13)geq(r23)+ ngeq(r12)

×
∫

dr4

(
g(3)

eq (r1, r3, r4)

geq(r14)
− geq(r13)

)
heq(r14)heq(r24).

(43)

Iteration of equation (43) yields an infinite series expressing
the triplet correlation function as a functional of the pair
correlation function geq(r). Substitution of this series
into the exact YBG equation (37) yields a diagrammatic
expansion for geq(r) in perfect agreement with that arising
from solution of equations (39)–(41). In this sense,
equation (43) represents a triplet generalization of the
more familiar pair-level HNC theory. The more powerful
approximations proposed by earlier workers [172–179]
probably provide a superior description of the triplet
correlations than equation (43) and would, upon substitution
into the YBG equation, lead to improved (i.e. better than
standard HNC) estimate of the pair correlations. However,
the Scherwinski approximation has a number of purely
technical advantages which make it particularly suitable
for application to nonequilibrium situations and which are
convenient for numerical implementation (see also [140],
which predates [181], but contains several of the key ideas).

6.3.4. Nonequilibrium integral equations. In order to
go beyond the Russel–Gast approximation [141] outlined
in section 6.3.2, Lionberger and Russel employed the
Scherwinski equation for the triplet correlation function (43)
in order to estimate the force (25) entering the pair
Smoluchowski equation [182]. Nonequilibrium pair and triplet
correlations are thus determined self-consistently and are both
influenced by the externally imposed flow. It should be
noted that the direct application of an equilibrium relation,
such as equation (43), to nonequilibrium ignores the fact
that nonequilibrium states are intrinsically different from
equilibrium and thus represents a major approximation.

The original version of the Lionberger–Russel theory
presented in [182] neglected hydrodynamic interactions
and has been implemented numerically for weak flows
only. No results beyond leading order in Pe have been
presented, although in principle the theory remains valid
also in the nonlinear regime. For φ < 0.4 the LR
theory makes predictions for the zero-shear viscosity, self-
diffusion coefficient and distorted microstructure in reasonable
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agreement with available computer simulation results. For φ �
0.45 significant quantitative deviations appear and the theory
becomes unreliable. We note that the study [182] considered
a suspension interacting via a continuous repulsive potential
which was then mapped onto a hard-sphere system. The input
equilibrium microstructure was generated using the Rogers–
Young integral equation [183] (an interpolation between PY
and HNC), despite the fact that the Pe → 0 limit of the theory
reduces to the HNC approximation for geq(r).

Although the Lionberger–Russel theory [182] provides
a sophisticated treatment of the microstructural distortion by
incorporating the triplet correlations into the self-consistency
loop, it is interesting that the results for η0 are inferior to
those from the much simpler Russel–Gast theory [141] at high
volume fractions. In particular, the former predicts only a
relatively weak growth of η0 with volume fraction, whereas the
latter suggests a divergence. Calculations of the linear moduli
G ′, G ′′ as a function of frequency have been performed using
the LR theory and, perplexingly, reveal a structural relaxation
time which decreases with increasing volume fraction. This
unphysical prediction would appear to be at odds with the
growth of η0 output from the theory and represents a weak
point of the approach, in need of clarification [184]. We note
that the only approximation invoked by the Lionberger–Russel
theory is the Scherwinski closure (43) for the triplet correlation
function. It would therefore be interesting, albeit numerically
demanding, to see whether any of the more sophisticated
triplet closures available [146, 172–180] can improve the
performance at higher volume fractions.

The theory developed in [182] omitted hydrodynamic
interactions in order to make clearer the approximations to
the many-body thermodynamic couplings and to facilitate
comparison with Brownian dynamics simulation results.
In [184] hydrodynamic interactions were included into the
theory of [182] in order to make closer contact with
experiment. The hydrodynamic approximations developed
were found to be of the correct magnitude but errors in
the underlying thermodynamic approximation, namely the
Scherwinski equation (43), led to an underestimation of the
magnitude of the nonequilibrium structure. It was identified
that the magnitude of the flow induced structural distortion
is determined by the slow structural relaxation in the system
(a finding supported by subsequent theoretical studies [185]),
which, taken together with the results for the volume fraction
dependence of the linear response moduli, suggests that the
integral equation approach does not capture the slow dynamics
characteristic of dense systems.

Wagner and Russel [140] developed an integral equation
approach closely related to that of Lionberger and Russel in
which the nonequilibrium triplet correlations are approximated
using a closure motivated by the PY equilibrium theory (42).
Although use of a PY-type closure ensures that excluded
volume packing constraints are treated realistically, at least
close-to-equilibrium, the theory of [140] included hydrody-
namic interactions by employing only the low density limit
of the pair hydrodynamic functions A, B, G and H entering
equations (26) and (28). The simultaneous introduction of
hydrodynamic and thermodynamic approximations in [140]

served to obscure the validity of the proposed nonequilibrium
PY approximation.

When using integral equation methods to tackle the triplet
correlations in nonequilibrium it is important to bear in mind
that the physical situation is intrinsically different from that
in equilibrium. Consequently, caution must be exercised
when attempting to apply trusted and familiar results from
equilibrium statistical mechanics to a system under flow. In
order to appreciate more clearly the approximations involved in
applying equilibrium triplet closures to the pair Smoluchowski
equation both Lionberger and Russel [182] and Szamel [168]
have invoked the concept of a ‘fictitious’ flow dependent two-
body potential u(r, γ̇ ). In a study of the kinetic theory of hard-
spheres Resibois and Lebowitz [186] assumed the existence
of a two-body potential u(r, γ̇ ) which, if employed in an
equilibrium calculation, reproduces exactly the nonequilibrium
pair correlation function

g(r) = geq(r; [u]), (44)

where the square brackets indicate a functional dependence
and where geq is anisotropic as a result of the anisotropy of
u. The fictitious potential thus serves as proxy for the flow
field acting on the real system. It should be made clear that the
assumption that an effective two-body potential can yield the
correct g(r) is quite distinct from the (erroneous) assumption
that an effective one-body external potential field can represent
the one-body flow induced force acting on the particles (see
the end of section 3.4). Equation (44) implicitly assumes that a
homogeneous one-body density distribution n is not a function
of the flow rate, thus neglecting possible dilation effects. Given
equation (44), it is natural to go one step further and assume
that the relation can be uniquely inverted, such that

u(r, γ̇ ) = u(r; [g]). (45)

By construction, u(r, γ̇ ) reproduces the nonequilibrium
pair correlations. However, if the same fictitious two-body
potential is used in an equilibrium statistical mechanical
calculation of the triplet correlation function, the exact
nonequilibrium g(3) will not be reproduced. The missing part
of the triplet correlation is referred to as the ‘irreducible’ term

g(3)(r1, r2, r3, γ̇ ) = g(3)
eq (r1, r2, r3; [g])+ g(3)

irr (r1, r2, r3; γ̇ ),

(46)
where we have assumed that (45) is valid. A key approximation
in the work of [182] and [168] is to set g(3)

irr = 0, which
essentially amounts to assuming that equilibrium relations such
as (43) may be used to connect triplet and pair functions in
nonequilibrium.

The nonequilibrium integral equation method considered
in [140, 182, 184] represents a synthesis of the exact dilute
limit results with statistical mechanical descriptions of dense
systems at equilibrium. While this approach is promising for
weak flows (Pe � 1), data are lacking for stronger flows
which would enable the close-to-equilibrium character of the
closure approximations to be better tested. In particular, it
has been emphasized by Szamel [168] that a major challenge
for theories of the distorted microstructure is to account for
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the nonzero distortion of g(r) in the vorticity–gradient plane
perpendicular to an applied shear flow. This distortion cannot
be detected to leading order in Pe and makes desirable
numerical studies of the existing closure approximations under
strong flow. Applications of the nonequilibrium integral
equation method have been restricted to shear flow and, with
the exception of small amplitude oscillatory shear [182, 184],
have neglected time-dependent flows entirely.

6.3.5. Alternative approaches. The nonequilibrium pair
correlations and rheology of colloidal dispersions under weak
shear flow were investigated by Szamel [168], who employed
functional methods to approximate the unknown integral term
in equation (25). Hydrodynamic interactions were neglected
entirely. Assuming that the irreducible term in (46) can be
neglected, the triplet correlation function can be developed in
a functional Taylor expansion about the equilibrium state. To
first order this is given by

g(3)(r1, r2, r3; [g]) = g(3)
eq (r1, r2, r3)

+
∫

dr4

∫
dr5

δg(3)(r1, r2, r3)

δg(r4, r5)
(g(r4, r5)− geq(r45)),

(47)

where the functional derivative is evaluated for a constant one-
body density. Equation (47) is clearly a close-to-equilibrium
approximation. Insertion of (47) into the expression for
the force (25) and rearrangement of terms leads to a closed
equation for g(r) which requires both g(3)

eq (r12, r23, r13) and
c(4)

eq (r1, r2, r3, r4), a higher order equilibrium direct correlation
function, as input. Following appropriate decoupling
approximations for the unknown higher order equilibrium
correlations and linearizing with respect to the shear flow,
Szamel obtained a closed equation for g(r) which only requires
geq(r) as input (for which the Verlet–Weiss approximation was
employed [169]).

The Szamel theory [168] is considerably simpler to
implement than the integral equation approach of Lionberger
and Russel [182] and provides comparable, perhaps even
slightly better, results for the zero-shear viscosity as a
function of volume fraction, as is evident from figure 12.
Both g(r) and its Fourier transform S(k) were found to
be qualitatively similar to those from the Lionberger–Russel
theory, substantially underestimating the magnitude of the
distortion from equilibrium when compared to Brownian
dynamics simulation.

In an early study, Ronis took an alternative approach based
on fluctuating hydrodynamics, in which phenomenological
fluctuating terms are added to the macroscopic equations of
hydrodynamics [187]. The theory of stochastic processes may
then be employed to calculate nonequilibrium time correlation
functions and the distorted microstructure. Of all the theories
described in this and the previous section, the Ronis theory
provides the most accurate results for the distortion of the
structure factor at low Pe values. Nevertheless, it can be
shown that the Ronis approximation leads to a vanishing of
the microstructural distortion in the vorticity–gradient plane
at all Pe, in contradiction to experiment and simulation
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Figure 12. The reduced zero-shear viscosity as a function of volume
fraction as predicted by various theories based on the pair
Smoluchowski equation: Szamel (black) [168], Brady (red),
Lionberger–Russel (blue) [182], Ronis (green) [187]. The inset
shows the results of the Szamel theory compared with Brownian
dynamics simulation data (circles). For φ > 0.43 the theory strongly
underestimates the zero-shear viscosity. (Adapted from [168].)

results [159]. This deficit is related to the fact that the hard-
sphere ‘core condition’ g(|r| < 1) = 0 is violated within
this approach. The Ronis theory reduces to the closely related
theory of Dhont [156] in the low Pe, linearized limit. In
another early work, Schwarzl and Hess [188] postulated a
phenomenological equation for g(r) involving a number of
empirical parameters representing the relaxation times in the
system. However, due to the phenomenological nature of
both the fluctuating hydrodynamics approach and the equation-
of-motion for g(r) proposed by Schwarzl and Hess, the
foundation of the theoretical treatments presented in [187]
and [188] in nonequilibrium statistical mechanics is unclear.

Finally, we note that Wagner has assessed approaches
based on the pair Smoluchowski equation using the GENERIC
framework of beyond equilibrium thermodynamics [189].
This formalism enables any proposed closure of the pair
Smoluchowski equation to be checked for thermodynamic
consistency. The study presented in [189] identified the
thermodynamically admissible expression for the stress tensor
and clarified the nature of the inconsistencies which can occur
when separate derivations are performed for the equation-of-
motion for g(r) and the stress tensor.

6.4. Temporal locality versus memory functions

In sections 5.1 and 5.2 we introduced briefly the Green–
Kubo expressions for calculating the shear stress in both the
linear (17) and nonlinear regimes (22). Within the Green–
Kubo framework, transport coefficients are related to integrals
over time correlation functions [191]. The growth of the
shear viscosity as a function of volume fraction is thus related
to an increasingly slow decay of the stress autocorrelation
function. What is lacking thus far in the discussion
of the pair Smoluchowski equation and its approximate
solutions, is the connection between the temporally local
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equations (24) and (29) and the nonlocal expressions (17)
and (22) fundamental to the time correlation function
formalism. Moreover, the memory kernels characteristic
of the time correlation approach (and widely employed in
continuum mechanics approaches, see section 2) make no
explicit appearance within the pair Smoluchowski framework.

The key to understanding the connection between the
nonlocal time correlation formalism and approaches based
on the local pair Smoluchowski equation lies in the study
of time-dependent external flow fields. Indeed, it is the
absence of time-dependent data from the pair Smoluchowski
approach which has served to obscure the relationship between
these two methods, despite the fact that they are formally
equivalent. The only available Smoluchowski-based time-
dependent calculations were performed using the Lionberger–
Russel theory [27, 182, 184] for small amplitude oscillatory
shear flow. As pointed out in section 6.3.4, the available results
for the volume fraction dependence of G ′(ω) and G ′′(ω)

within the LR theory reveal underlying problems resulting
from the approximations employed (i.e. a reduction of τα with
increasing φ) which would otherwise have gone unnoticed.
This serves to emphasize the importance of going beyond
steady flow calculations in applications of pair Smoluchowski
theories.

The generalization of equation (22) to general time-
dependent shear is given by integration over the entire flow
history [16]

σxy(t) =
∫ t

−∞
dt ′ γ̇ (t ′) G(t, t ′), (48)

where G(t, t ′) ≡ G(t, t ′; [γ̇ ]) is the nonlinear shear modulus.
The lack of time-translational invariance in the modulus
arises from a functional dependence on the shear rate. The
microscopically derived equation (48) should be contrasted
with the more familiar phenomenological result (2).

Using the generalized Green–Kubo result (48) it is
instructive to consider a simple special case: the stress
response of hard-spheres to the onset of steady shear flow
in the absence of hydrodynamic interactions. Specifically,
we consider a shear field which is switched from zero to a
constant value, γ̇ (t) = γ̇ �(−t). For this choice of shear field
equation (48) reduces to

σxy(t) = γ̇

∫ t

0
dt ′ Gss(t

′), (49)

where Gss(t) is the time translationally invariant shear
modulus under steady shear flow. On the other hand,
within approaches based on the distorted microstructure
the interaction contribution to the stress is given by (see
equation (29))

σxy(t) = −n2

2

∫
dr
rr

r
v′(r) g(r, t), (50)

where g(r, t) is calculated from the pair Smoluchowski
equation (24) subject to the switch-on shear flow under
consideration. The expressions (49) and (50) are formally

equivalent. Equating the time derivatives thus leads to the exact
relation

Gss(t) = − n2

2γ̇

∫
dr
rr
r

v′(r)
∂g(r, t)

∂ t
. (51)

The quiescent shear modulus is thus recovered in the slow flow
limit

Geq(t) = −n2

2

∫
dr
rr

r
v′(r) lim

γ̇→0

(
1

γ̇

∂g(r, t)

∂ t

)
. (52)

The right-hand side of equation (52) can be further reduced to
the determination of the function f (r, t) by substitution of the
first order expansion (31) for g(r, t).

As the volume fraction is increased, the time derivative
on the rhs of equation (52) must give rise to a growth in the
timescale determining the relaxation of stress fluctuations, as
described by Geq(t). The fact that this is not captured by
the Lionberger–Russel theory [27, 182, 184] simply reflects
the failings of the approximate closure (43) relating the
nonequilibrium triplet and pair correlation functions. However,
it is not clear that even an exact equilibrium expression for
the triplet correlations would be sufficient to resolve these
difficulties. If the key source of error lies in the neglect of
the irreducible term appearing in (46) then considerable new
insight into the nature of nonequilibrium states will be required
in order to make further progress using integral equation
methods. Nevertheless, these considerations should serve to
motivate time-dependent studies of the Russel–Gast [141] and
Szamel [168] theories.

While the particular example chosen (switch-on shear
flow) provides access to the steady shear rate dependent
modulus, other choices of time-dependence may enable
connection to be made between non-time translationally in-
variant correlation functions (e.g. G(t, t ′)) and time-dependent
solutions of the pair Smoluchowski equation. The issue of
whether temporally local constitutive equations are preferable
to nonlocal functionals for describing complex fluids has been
addressed within the framework of nonequilibrium thermody-
namics [190]. The nonequilibrium thermodynamics approach
requires identification of an appropriate set of structural
variables which, in addition to the standard hydrodynamic
variables of mass, momentum and internal energy density,
contain all information about the state of the system at a
given time that is necessary to determine the macroscopic
quantities of interest. The pair Smoluchowski approaches
discussed in this section essentially introduce g(r) as an
additional structural variable [189]. While this appears to be
a valid approach for low and intermediate volume fractions,
a correct identification of the structural variables appropriate
for describing glass formation and dynamical arrest remains
to be found. For this reason the most promising approaches
to treating high volume fraction states are based on the
generalized Green–Kubo relations and mode-coupling theory.

7. Glass rheology

Assuming that crystallization effects can be suppressed (see
section 4) the volume fraction can be increased to the
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Figure 13. A snapshot from a Brownian dynamics simulation of a
quiescent binary hard-disc mixture (using a size ratio of 1:1.4 to
supress crystallization). The simulation was performed at a
two-dimensional volume fraction of φ2D = 0.81, which lies above
the estimated glass transition packing φ

(g)

2D ∼ 0.79, with 50% large
discs and 50% small discs. (Figure courtesy of F Weyßer.)

point at which the individual particles are unable to diffuse
beyond the cage of nearest neighbours and a dynamically
arrested glassy state is formed. In order to visualize the
amorphous cage structure in such a glassy state figure 13 shows
a configuration snapshot taken from a Brownian dynamics
simulation of a binary hard-sphere mixture in two dimensions
(hard-discs) [75]. The two-dimensional volume fraction φ2D =
0.81 of the simulation is above the estimated glass transition
point of φ2D ≈ 0.79 and the size ratio of large to small disc
radii is 1.4, a value empirically found to frustrate crystallization
in two-dimensional systems (which occurs at φ2D = 0.69
for monodisperse discs). In both two- and three-dimensional
systems the physics of the glass transition becomes important
for determination of both the rheology and flow distorted
microstructure of high volume fraction systems.

The response to externally applied flow of states close
to, or beyond, the glass transition is only beginning to be
understood and establishing the basic principles of glass
rheology remains a challenging task. At present, the only
truly microscopic theories available are provided by recent
extensions of the quiescent MCT which enable the effects
of external flow to be incorporated into the formalism and
thus make possible a theoretical investigation of the complex
interaction between arrest and flow.

7.1. MCT inspired approaches

Extending earlier work on the low volume fraction self-
diffusion of colloidal dispersions [192], Miyazaki and
Reichman constructed a self-consistent mode-coupling-type

approach to describe collective density fluctuations for
dense colloidal fluids under shear below the glass transi-
tion [193–195]. The Miyazaki–Reichman theory considers
time-dependent fluctuations about the steady state and thus
requires the (unknown) flow distorted structure factor S(k)
as an input quantity. Approximating S(k) by the quiescent
correlator, results have been presented for colloidal dispersions
in two dimensions under steady shear [193, 194] and in three
dimensions (subject to additional isotropic approximations)
under oscillatory shear [195]. Applications to glassy states
have been avoided as the theory relies upon an ergodic
fluctuation-dissipation theorem. An alternative extended-MCT
approach has been proposed by Koblev and Schweizer [196]
and Saltzman et al [197] which is built on the idea that
entropic barrier hopping is the key physical process driving
the microscopic dynamics and rheology of glassy colloidal
suspensions. Due to the activated nature of the barrier hopping
process the ideal glass transition described by quiescent MCT
(see section 4) plays no role. A nonlinear rheological response
results from a stress induced modification of the barrier
heights.

A currently promising method of extending quiescent
MCT to treat dense systems under flow involves integration
through the transient dynamics, starting from an equilibrium
Boltzmann distribution in the infinite past. In contrast
to [193–195] the distorted microstructure is an output of this
approach. The initial form of the theory was outlined by
Fuchs and Cates for steady shear flow [135] and presented
two essential developments: firstly, that integration through
the transient dynamics leads directly to exact generalized
Green–Kubo formulae, relating average quantities to integrals
over microscopic time correlation functions. Secondly,
that MCT-type projection operator approximations reduce
the formal Green–Kubo expressions to closed equations
involving transient correlators (which can be calculated
self-consistently). A strong prediction of the ITT-MCT
theory resulting from combining these two steps is that the
macroscopic flow curves exhibit a dynamic yield stress (see
section 5.4) in the limit Pe → 0, for states which would be
glasses or gels in the absence of flow. Moreover, the yield
stress appears discontinuously as a function of volume fraction,
in contrast to mesoscopic approaches [34–36]. The ITT-
MCT thus provides a scenario for a nonequilibrium transition
between a shear thinning fluid and a yielding amorphous
solid which is supported by considerable evidence from
both colloidal experiments [60, 61, 134, 198] and Brownian
dynamics simulation [40, 75].

Due to the numerical intractability of the microscopic
theory of [135], subsequent work focused on the construction
of both isotropically averaged approximations to the full
anisotropic equations and simplified schematic models inspired
by these [57]. Comparison of the theoretical predictions with
experimental data for thermosensitive core–shell particles (see
figure 7) has proved highly successful [60, 61, 199–201].
The original formulation of the ITT-MCT (more details
of which can be found in [202]) has subsequently been
superseded by a more elegant version [20]. It is interesting
to note that the significant technical changes to the ITT-
MCT formalism introduced in [20] lead to expressions
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which resemble more closely those of Miyazaki and
Reichman [193–195]. Given the very different nature
of the formal derivation (fluctuating hydrodynamics versus
projection operator methods) and approximations employed,
the similarity of the final expressions is reassuring and serves
to highlight the robustness of MCT-based approaches. For
a comprehensive overview of the status of the steady shear
theory we refer the reader to the recent review [19].

Going beyond steady shear, the original formulation of
ITT-MCT [57, 135, 202] has been generalized to treat arbitrary
time-dependent shear [16]. These developments not only
enable shear fields of particular experimental relevance to be
investigated (e.g. large amplitude oscillatory shear flow), but
have also revealed an underlying mathematical structure which
is not apparent from consideration of steady flows alone. The
theory has been applied (albeit subject to various simplifying
approximations) to investigate the build-up of stress and
corresponding microscopic particle motion, as encoded in the
mean-squared-displacement, following the onset of shear [62].
More recently, the modern version of ITT-MCT [20] has
been extended to describe time-dependent flow of arbitrary
geometry [17], thus making possible the study of non-shear
flow and enabling the full tensorial structure of the theory
to be identified. The developments presented in [17] elevate
the ITT-MCT approach to the level of a full constitutive
theory for dispersion rheology and may be regarded as
the most up-to-date formulation of the theory. While the
development of numerical algorithms to efficiently solve the
fully microscopic theory [17] is currently in progress, this
task is made computationally demanding by the combination
of spatial anisotropy and lack of time-translational invariance
presented by many flows of interest. In [18] a simplified theory
was presented which contains the essential physics of the full
microscopic equations, including the tensorial structure, but
which is much more convenient for numerical solution (see
section 7.7).

7.2. Integration through transients

The integration through transients (ITT) approach originally
developed by Fuchs and Cates [135] and subsequently
developed in [16, 17] provides a formal expression for the
nonequilibrium distribution function �(t) required to calculate
average quantities under flow. In essence, ITT provides a
very elegant method of deriving generalized (i.e. nonlinear in
κ(t)) Green–Kubo relations which invite mode-coupling-type
closure approximations. The current formulation of the theory
neglects hydrodynamic interactions (HI) entirely. On one hand
this omission is made for purely technical reasons, but it is
also hoped that HI will prove unimportant for the microscopic
dynamics of the dense states to which the final theory will be
applied. In the following we will briefly outline the key points
of ITT, employing throughout the modern formulation of [17].

The starting point for ITT is to re-express the
Smoluchowski equation (14) in the form

∂�(t)

∂ t
= �(t)�(t), (53)

where, in the absence of HI, the Smoluchowski operator
controlling the dynamical evolution of the system is given
by [14]

�(t) =
∑

i

∂ i · [D0(∂ i − βFi)− κ(t) · ri ]. (54)

Equation (53) may be formally solved using a time-ordered
exponential function (which arises because �(t) does not
commute with itself for different times [203])

�(t) =
[

exp+
∫ t

−∞
ds �(s)

]
�eq, (55)

where �eq is the initial distribution function in the infinite
past, which is taken to be the equilibrium Boltzmann–Gibbs
distribution corresponding to the thermodynamic state point
under consideration. The assumption of an equilibrium
distribution is clearly acceptable in situations for which the
quiescent state is one of ergodic equilibrium. However, the role
of the initial state is less clear for statepoints in the glass and the
dependence, if any, on the initial condition may depend upon
the details of the flow between t = −∞ and the present time
t . The absence of a general proof that �(t) is independent of
�(−∞) leaves open the possibility that certain flow histories
do not restore ergodicity and that the system thus retains a
dependence on the initial state.

The solution (55) is formally correct, but not particularly
useful in its present form. A partial integration yields an
alternative solution of (53) which is exactly equivalent to (55),
but more suited to approximation

�(t) = �e +
∫ t

−∞
dt1 �e κ(t1) : σ̂ e

∫ t
t1

ds �†(s)

− , (56)

where σ̂αβ = −∑
i Fα

i rβ

i and the ‘double dot’ notation
familiar from continuum mechanics, A : B = Tr{A ·B} [204],
has been employed. As a result of the partial integration the
dynamical evolution in equation (56) is dictated by the adjoint
Smoluchowski operator

�†(t) =
∑

i

[D0(∂ i + βFi)+ ri · κT(t)] · ∂ i . (57)

Equation (56) is the fundamental formula of the ITT
approach and expresses the nonequilibrium distribution
function as an integral over the entire transient flow history.
Both solutions (55) and (56) are valid for arbitrary flow
geometries and time-dependence. The relation between the
two formal solutions is analogous to the Heisenberg and
Schrödinger pictures of quantum mechanics in which the
time evolution of the system is attributed to either the
wavefunction (equation (55)) or the operators representing
physical observables (equation (56)). It should be understood
that the ITT form (56) is an operator expression to be used
with the understanding that a function to be averaged is
placed on the right of the operators and integrated over the
particle coordinates. A technical point to note is that in
cases for which phase space decomposes into disjoint pockets
(‘nonmixing’ dynamics) the distribution (56) averages over
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all compartments. A general function of the phase space
coordinates f (t, {ri}) thus has the average

〈 f 〉ne = 〈 f 〉 +
∫ t

−∞
dt1

〈
κ(t1) : σ̂ e

∫ t
t1

ds �†(s)

− f

〉
, (58)

where 〈 f 〉ne denotes an average over the nonequilibrium distri-
bution (56). Equation (56) generalizes the original formulation
of ITT [135] to treat arbitrary time-dependence [17].

7.3. Translational invariance

Before applying mode-coupling-type approximations to the
exact result (58) we first address an important consequence
of assuming homogeneous flow (reflected in the spatial
constancy κ(t) appearing in equation (53)). On purely
physical grounds, it seems reasonable that for an infinite
system the assumed translational invariance of the equilibrium
state (crystallization is neglected) will be preserved by the
Smoluchowski dynamics. However, proving this for a general
time-dependent flow is mathematically nontrivial, due to
the fact that the Smoluchowski operator (54) is itself not
translationally invariant. By considering a constant vectorial
shift of all particle coordinates, r′i = ri + a, Brader et al have
shown that the nonequilibrium distribution function �(t) is
translationally invariant (but anisotropic) for any homogeneous
velocity gradient κ(t) [17].

Given the translational invariance of �(t) it becomes
possible to investigate the more interesting invariance
properties of the two-time correlation functions. The
correlation between two arbitrary wavevector-dependent
fluctuations δ fq = fq−〈 fq〉ne and δgk = gk−〈gk〉ne occurring
at times t and t ′ is given by

Cfqgk(t, t ′) = 〈δ f ∗q (t)δgk(t
′)〉ne. (59)

It is clear that in a homogeneous system the correlation
function (59) must be translationally invariant. However, in
this case, shifting the particle coordinates by a constant vector
a yields

Cfqgk(t, t ′) = e−i(q̄(t,t ′)−k)·a Cfqgk(t, t ′), (60)

where

q̄(t, t ′) = q · e
− ∫ t

t ′ ds κ(s)
− . (61)

The only way in which the required translational invariance of
the correlation function can be preserved is if the exponential
factor in (60) is equal to unity. This requirement has the
consequence that a fluctuation at wavevector k = q̄(t, t ′) at
time t ′ is correlated with a fluctuation with wavevector q at
time t as a result of the affine solvent flow. Equation (61)
thus defines the advected wavevector which is central to the
ITT-MCT approach and which captures the affine evolution of
the system in approaches focused on Fourier components of
fluctuating quantities (e.g. the density ρk) rather than particle
coordinates directly. The wavevector q̄(t, t ′) at time t ′ evolves
due to flow induced advection to become q at later time t .
It should be noted that various definitions and notations for
the advected wavevector have been employed in the literature

documenting the development of ITT-MCT and which could
provide a source of confusion. In the present work we
exclusively employ the modern definition used in [17, 18, 20].

Although equation (61) arises from microscopic consid-
erations it is nevertheless fully consistent with the continuum
mechanics approaches outlined in section 2, despite the very
different mindset underlying the two methods. Equation (61)
simply describes the affine deformation of material lines in
Fourier space and can thus be used to define the inverse
deformation gradient tensor via q̄(t, t ′) = q · E−1(t, t ′) in
complete accord with continuum approaches. Doing so leads
to the identification

E−1(t, t ′) = e
− ∫ t

t ′ ds κ(s)
− . (62)

As the deformation gradient tensor simply describes the affine
distortion of a material line under flow, it is natural to define
also a reverse-advected wavevector resulting from the inverse
transformation q(t, t ′) = q ·E(t, t ′), where

E(t, t ′) = e
∫ t

t ′ ds κ(s)
+ . (63)

The choice of using either advected or reverse-advected
wavevectors in treating the effects of affine motion within
a microscopic theory has parallels with the choice between
Lagrangian and Eulerian specifications of the flow field
in continuum fluid dynamics approaches [30]. Within a
continuum mechanics framework the deformation gradient
would simply be defined as the solution of the equation

∂

∂ t
E(t, t ′) = κ(t)E(t, t ′), (64)

for a given flow κ(t). According to the rules of time-
ordered exponential algebra [203], equation (63) is the formal
solution of (64), thus demonstrating the consistency between
the Fourier-space microscopic approach of [17] and traditional
real-space continuum mechanics.

The advected wavevector introduced above provides a
convenient way to keep track of the affine deformation in a
particulate system. Mode-coupling-type approximations (to
be discussed below) seek to factorize the average entering
equation (58) by projecting the dynamics onto the subspace of
density fluctuations ρq [98]. For a flowing system a fluctuation
at wavevector q̄(t, t ′) at time t ′ evolves (in the absence of
interactions and Brownian motion) to one at q at time t . It
thus becomes essential to project onto density fluctuations at
the correct advected wavevectors in order to avoid spurious
decorrelation effects in the resulting approximations.

7.4. Microscopic constitutive equation

In order to address dispersion rheology the special choice f =
σ̂/V is made in (58), leading to an exact generalized Green–
Kubo relation for the time-dependent shear stress tensor [17]

σ (t) = 1

V

∫ t

−∞
dt1

〈
κ(t1) : σ̂ e

∫ t
t1

ds �†(s)

− σ̂

〉
, (65)

noting that there are no ‘frozen in’ stresses in the equilibrium
state, 〈σ 〉 = 0. The adjoint Smoluchowski operator �†(t) has
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a linear dependence on κ(t) and equation (65) is thus nonlinear
in the velocity gradient tensor. Equation (65) is a formal
constitutive equation expressing the stress tensor at the present
time as a nonlinear functional of the flow history. Although the
result (65) does not provide an exact description of the physical
system under consideration (particle momenta are assumed to
have relaxed and hydrodynamic interactions are absent), it has
a formal status equivalent to that of equation (56). For the
special case of steady shear flow (65) is consistent with (22)
with a shear modulus given by (23).

Application of MCT-type projection operator factoriza-
tions [17] to the average in (65) leads to a complicated, but
closed, constitutive equation expressing the deviatoric stress in
terms of the strain history [17, 18]

σ (t) = −
∫ t

−∞
dt ′

∫
dk

32π3

[
∂

∂ t ′
(k ·B(t, t ′) · k)kk

]

×
[(

S′k S′k(t,t ′)

kk(t, t ′)S2
k

)
�2
k(t,t ′)(t, t ′)

]
, (66)

where Sk and S′k are the equilibrium static structure factor
and its derivative, respectively. The influence of external
flow enters both explicitly, via the Finger tensor B(t, t ′)
(see section 2.1), and implicitly through the reverse-advected
wavevector. As noted above, the reverse-advected wavevector,
which provides an important source of nonlinearity in (66),
enters as a result of judicious projection of the dynamics
onto appropriately advected density fluctuations ρk(t,t′). The
normalized transient density correlator describes the decay
under flow of thermal density fluctuations and is defined by

�k(t, t ′) = 1

N Sk

〈
ρ∗ke

∫ t
t ′ ds �†(s)
− ρk̄(t,t ′)

〉
. (67)

The occurrence of the advected wavevector in (67) ensures that
trivial decorrelation effects are removed (i.e. that in the absence
of Brownian motion and potential interactions �k = 1 for all
times).

In order to close the constitutive equation (66) we
require an explicit expression for the transient correlator (67).
Time-dependent projection operator manipulations combined
with the theory of Volterra integral equations yield an exact
equation-of-motion for the time evolution of the transient
correlator containing a generalized friction kernel—a memory
function formed from the autocorrelation of fluctuating
stresses. Mode-coupling-type approximations to this kernel
yield the nonlinear integro-differential equation [16–18]

�̇q(t, t0)+ �q(t, t0)

(
�q(t, t0)

+
∫ t

t0

dt ′mq(t, t ′, t0)�̇q(t
′, t0)

)
= 0 (68)

where the overdots denote partial differentiation with respect
to the first time argument. Here the ‘initial decay rate’ obeys
�q(t, t0) = D0q̄2(t, t0)/Sq̄(t,t0) with D0 the diffusion constant
of an isolated particle. The formal manipulations presented
in [16, 17] have revealed that imposing a time-dependent flow
results in a memory kernel which depends upon three time
arguments. The presence of a third time argument, which

would have been difficult to guess on the basis of quiescent
MCT intuition, turns out to have important consequences for
certain rapidly varying flows (e.g. step strain [16]) and is
essential to obtain physically sensible results in such cases.
The memory kernel mq(t, t ′, t0) entering (68) is given by the
factorized expression [17, 18]

mq(t, t ′, t0) = ρ

16π3

∫
dk

Sq̄(t,t0)Sk̄(t ′,t0)Sp̄(t ′,t0)

q̄2(t ′, t0)q̄2(t, t0)

× Vqkp(t
′, t0) Vqkp(t, t0)�k̄(t ′,t0)(t, t ′)�p̄(t ′,t0)(t, t ′), (69)

where p = q− k, and the vertex function obeys

Vqkp(t, t0) = q̄(t, t0) · (k̄(t, t0)ck̄(t,t0) + p̄(t, t0)cp̄(t,t0)) (70)

with Ornstein–Zernike direct correlation function ck = 1 −
1/Sk (see equation (39)). In the linear regime equations (66)
and (68) reduce to the standard quiescent MCT forms (19)
and (21), respectively.

An important feature of equations (66)–(70) is that they
offer a closed constitutive equation requiring only the static
structure factor and velocity gradient tensor κ(t) as input
to calculating the stress tensor. The equilibrium Sq is
determined by the interaction potential and thermodynamic
statepoint and, as in quiescent MCT, serves as proxy for the
pair potential (an interpretation arising from field-theoretical
approaches to MCT [205]). The role of Sq within the ITT-MCT
should be contrasted with that within the Miyazaki–Reichman
theory [193–195], discussed in section 7.1, where it enters as
an approximation to the flow distorted structure factor S(k).

In section 2.3 we introduced the principle of material
objectivity; an approximate symmetry requiring that a valid
constitutive relation be rotationally invariant. While verifi-
cation of rotational invariance is straightforward for the phe-
nomenological Lodge equation introduced in section 2.1, proof
becomes more demanding for the microscopic constitutive
theory given by equations (66)–(70). Nevertheless, substitution
of equations (11) and (13) into (66)–(70) yields the result (12),
thus verifying that the ITT-MCT constitutive equation is indeed
material objective as desired [17]. Material objectivity is an
important consistency check for constitutive theories based on
overdamped Smoluchowski dynamics, for which it represents
an exact symmetry constraint.

Possibly the most exciting feature of the ITT-MCT
constitutive equation (66)–(70) is that it incorporates a
mechanism for describing the slow structural relaxation
leading to dynamical arrest. The predicted rheological
response thus goes from that of a viscous fluid to that of an
amorphous solid, characterized by an elastic constant, upon
variation of the thermodynamic control parameters. The
ability of the theory to unify the description of fluid and
glassy states stems from the underlying mode-coupling-type
approximations which are tailored to capture the cooperative
particle motion in dense colloidal dispersions, ultimately
leading to particle caging and arrest. Mathematically, this
scenario arises from a bifurcation in the solution of the
nonlinear integro-differential equation (68) at sufficiently
high volume fraction/attraction strength associated with a
diverging relaxation time of the transient density correlator.
Glass formation within the MCT-ITT approach is a purely
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dynamical phenomenon, as the equilibrium Sq used as
input varies smoothly across the transition. The fluid–solid
transition contained within the ITT-MCT equations can be
better appreciated by considering the small strain limit of
equation (66) which yields the linear response result [17]

σ l(t) =
∫ t

−∞
dt ′

∫
dk

16π3
{(k · κ̄(t ′) ·k)kk}

(
S′k�k(t − t ′)

kSk

)2

(71)
where �k(t) is the correlator from quiescent MCT [98]. In the
glass the correlator does not relax to zero for long times and a
partial integration of (71) followed by taking the limit of small
strain leads to the result

σ (t) = 2G(t →∞)ε(t), (72)

where ε(t) is the infinitesimal strain tensor and G(t → ∞) is
an elastic modulus obtained from equation (19) (also known
as Lamé’s second coefficient, the first being zero here due
to incompressibility). Equation (72) is essentially Hooke’s
law, describing the small strain response of a glassy solid.
Going beyond linear response, equation (66) incorporates the
fluidizing effect of flow and thus makes possible investigation
of a large number of time-dependent rheological situations
in which externally applied flow fields compete with glass
formation and slow structural relaxation (see section 7.6).

7.5. Distorted structure factor

The microscopic ITT-MCT constitutive equation discussed
above enables comparisons to be made with traditional
continuum rheological modelling (section 2) for which the
macroscopic stress tensor is the fundamental quantity of
interest. However, the formal ITT result (58) also enables
calculation of the distorted structure factor, S(k, t) = 1 +
n

∫
dr (g(r, t) − 1) ei k·r, which makes possible a comparison

with the microstructure obtained from approaches based on the
pair Smoluchowski equation (section 6.1). In particular, setting
f = �ρ∗kρk ≡ ρ∗kρk − 〈ρ∗kρk〉 in equation (58) yields the
formal result

S(k, t) = 〈ρ∗kρk〉 +
∫ t

−∞
dt ′

〈
κ(t ′) : σ̂ e

∫ t
t ′ ds �†(s)
− �ρ∗kρk

〉
.

(73)
Mode-coupling projection operator steps analogous to those
leading to (66) yield the ITT-MCT expression for the distorted
structure factor

S(k, t) = Sk −
∫ t

−∞
dt ′

∂Sk(t,t ′)

∂ t ′
�2
k(t,t ′)(t, t ′) (74)

where the transient density correlator is given by solution
of equations (68)–(70) for given Sk and κ(t) and where
an isotropic term has been suppressed. Equation (74) has
the appealing interpretation that flow induced microstructural
changes are built-up by integration of the affinely shifted
equilibrium structure factor over the entire flow history,
weighted by the transient density correlator describing the
fading memory of the system. The temporally nonlocal
character of equation (74) is in striking contrast to the local

approximations based on the pair Smoluchowski equation.
The former consists of a history integral over a memory
function which is itself determined by solution of a nonlocal
integro-differential equation (68) whereas the latter are purely
Markovian approximations.

Within the pair Smoluchowski approach, in the absence
of HI the stress tensor is exactly related to the distorted
pair correlation function by equation (29). It is therefore of
interest to enquire whether a similar connection holds within
the approximate ITT-MCT approach. It is a relatively simple
exercise to show that, subject to a certain constraint to be
discussed below, equations (66) and (74) are connected by the
relation [17]

σ (t) = −� 1− nkBT
∫

dk
16π3

kk
k

c′k δSk(t), (75)

where δSk(t; κ) = Sk(t; κ) − Sk and � is the equilibrium
osmotic pressure. For shear flow σxy(t) from (75) coincides
with a result of Fredrickson and Larson [206] for sheared
copolymers, reflecting the Gaussian statistics underlying
both the field-theory approach of [206] and the ITT-MCT
factorization approximations. Equation (75) thus connects
stresses to microstructural distortions, which build up over time
via the affine stretching of density fluctuations competing with
structural rearrangements encoded in �k(t, t ′).

For the off-diagonal stress tensor elements equation (75)
connects equations (66) and (74) directly. For the diagonal
elements contributing to the osmotic pressure equation (75) is
also valid, providing that the following approximate ‘sum-rule’
is obeyed

∂�

∂φ
= 1

6π

∫
dk

(
∂ ln Sk

∂ ln k

)(
∂ ln Sk

∂ ln φ

)
. (76)

Although it is not at all obvious that the above relation
should hold, numerical calculations for hard-spheres (using
e.g. the Percus–Yevick approximation for Sk [15]) show
that it represents a rather good approximation. It
should be emphasized that the application of projection
operator approximations to (65) and (73) yields approximate
expressions for the stress and structure factor, respectively,
which are not necessarily self-consistent, in the sense that
integration of the approximate S(k, t) leads to the approximate
σ (t). The fact that the ITT-MCT S(k, t) is almost consistent
with the direct ITT-MCT approximation to the stress is a
testament to the underlying robustness of the method.

Although the caging mechanism is expected to be most
important for statepoints close to the glass transition, ITT-
MCT calculations of S(k) for hard-spheres under weak shear
flow [185] suggest that the (truncated) divergence of the
structural relaxation timescale at the point of dynamical arrest
(be it at the idealized glass transition point, as predicted by
MCT, or some higher volume fraction [97]) remains relevant
for volume fractions well removed from the singularity and has
a range of influence which extends back to dense equilibrium
fluid states. More recently the MCT-ITT S(k) has been
evaluated numerically for two-dimensional hard-discs under
shear at finite values of Pe [75], without invoking any
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additional isotropic approximations (see section 7.6). These
calculations show only qualitative agreement with Brownian
dynamics simulation results and overestimate the magnitude
of the distortion by around an order of magnitude, a failing
which is attributed to the fact that ITT-MCT apparently
underestimates the speeding up of structural relaxations
induced by the shear flow. This is to be contrasted with
pair Smoluchowski-based approaches (e.g. [168, 182]) which
underestimate the magnitude of the low shear distortion for
dense fluid states (φ ∼ 0.5) by around an order of magnitude.
It therefore appears that neither the pair Smoluchowski nor
the ITT-MCT approach can account adequately for the shear
induced distortion of the microstructure.

7.6. Applications

Explicit numerical solution of the ITT-MCT constitutive
equation (equations (68)–(70)) has been performed for a
one-component system of hard-spheres under steady flows
of various geometry [17]. However, the computational
resources required to solve the anisotropic equations (68)–
(70) in three dimensions over many decades of time are
daunting and the efficient numerical algorithms required to
reduce the computational load are still under development.
Nevertheless, it is hoped that much of the essential physics may
be captured by solving a simplified set of equations in which
the advected wavevectors are approximated by an isotropic
average k(t, t ′)→ kis(t, t ′), where

k2
is(t, t ′) = 1

4π

∫
d� k2(t, t ′). (77)

This technical approximation has been successfully applied
to the case of simple shear [57, 195] and enables the
angular integrals entering equations (68)–(70) to be performed
analytically. For two-dimensional systems algorithms have
been developed which enable accurate numerical solution
of the ITT-MCT equations without additional isotropic
approximation [75].

In figure 14 flow curves for hard-spheres resulting
from solution of equations (68)–(70) subject to the isotropic
approximation (77) are shown for both steady shear and steady
planar extensional flow. For these two choices of flow the
defining velocity gradient tensors are given by

κs =
( 0 γ̇ 0

0 0 0
0 0 0

)
κe =

(
γ̇ 0 0
0 −γ̇ 0
0 0 0

)
. (78)

Specifically, figure 14 shows σxy under shear flow and �σ ≡
σxx − σyy under planar extension for hard-spheres as a
function of Pe, for various volume fractions around the glass
transition. The equilibrium structure factors used as input for
these calculations were provided by the monodisperse Percus–
Yevick theory [15]. For extensional flows it is natural to
plot the stress difference �σ as a function of Pe, as this
is simply related to the extensional viscosity ηe = �σ/γ̇ .
Flow curves below the glass transition show a regime of
linear response, characterized by a constant viscosity, followed
by shear thinning as Pe is increased. On approaching φg
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Figure 14. Flow curves from the microscopic ITT-MCT approach
of [17] for hard-spheres at three different volume fractions close to
the glass transition φc. Full lines show the steady shear stress,
σ = σxy in units of kBT/(2R)3 under shear flow as a function of Pe.
Broken lines show the stress difference σ = σxx − σyy (related to the
extensional viscosity) under planar extensional flow. Each curve is
labelled according to the distance in volume fraction from the glass
transition, �φ = φ − φc. (a) and (b) are fluid states with
�φ = −10−4 and −10−3, respectively. State (c) is in the glass,
�φ = 10−4, and exhibits a dynamic yield stress for both flow
geometries. The inset shows a possible realization of planar
extensional flow. The lower two panels show the Trouton ratio
σxx − σyy/σxy as a function of Pe for both uniaxial and planar
extensional flow.

from below the linear regime moves to lower values of Pe
and disappears entirely on crossing the glass transition. The
resulting plateau in the flow curves identifies a dynamical
yield stress (see section 5.4) for both of the considered flow
geometries.

In the lower panels of figure 14 the Trouton ratio (σxx −
σyy)/σxy [29] is shown as a function of Pe for both planar
and uniaxial extensional flow [17]. For fluid states in the
linear regime Trouton’s rules assert that the ratio of extensional
to shear viscosity ηe/ηs takes the values 4 and 3 for planar
and uniaxial extension, respectively. These characteristic
ratios arise from purely geometrical considerations and emerge
naturally from the ITT-MCT approach as the Pe → 0 limiting
values of the Trouton ratio. For glassy states (curves labelled
(c) in figure 14) the structural relaxation time diverges and
the linear response regime vanishes. As a consequence, the
classical Trouton ratios are not recovered for glassy states
in the limit Pe → 0 and nontrivial values dictated by the
dynamical yield stress may be identified. The results for
extensional flow presented in [17] alongside those for simple
shear [135] thus provide the first steps towards the prediction
from first-principles theory of a dynamic yield stress surface
for glasses [210]. Calculation of the yield surface from a
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simplified schematic version of equations (68)–(70) will be
discussed in section 7.8 below.

Going beyond steady flow, in [62] experiments on PMMA
colloidal dispersions, molecular dynamics simulation and the
ITT-MCT approach of [16] were combined to study the
evolution of stresses during start-up shear flow for high volume
fraction fluids close to glassy arrest. The sudden onset of
a steady shear flow leads to the build-up of stresses in the
systems as a function of the accumulated strain γ ≡ γ̇ t .
For small values of γ the response is elastic (as described
by equation (72)), whereas for large strains the system enters
steady state viscous flow with a stress independent of γ . In
between these two limits, typically at strains around 10%, the
stress exhibits a maximum as the local microstructure is broken
up by the external flow [138]. Although a stress ‘overshoot’ in
response to start-up shear flow is a rather generic feature of
the rheology of complex fluids, its microscopic origins remain
poorly understood. A central novel aspect of [62] was thus
to connect the stress overshoot to anomalous behaviour in
the mean-squared-displacement (‘superdiffusion’) identified in
both simulation and confocal microscopy experiments. From
the exact equation (49) it is clear that the only way in which
the shear stress can exhibit a maximum is if the modulus under
steady shear, Gss(t), becomes negative at long times. Figure 5
shows that Gss(t) from the ITT-MCT approach (employing
approximation (77)) indeed predicts negative values at long
times. The inset to figure 5 shows the same data as a function
of strain and demonstrates that the negative region of Gss(t)
occurs at around 10% strain, consistent with the position of the
stress overshoot.

7.7. Schematic model

The microscopic ITT-MCT constitutive equation outlined in
section 7.4 provides a route to first-principles prediction of the
rheological behaviour of arrested colloidal states. However,
the anisotropic, wavevector-dependent expressions are rather
intractable for three-dimensional flows, hindering both their
practical use and interpretation. In order to facilitate numerical
calculations for flows of interest a simplified ‘schematic’
version of the tensorial microscopic theory has very recently
been proposed [18]. Such schematic models have proved
invaluable in the analysis of mode-coupling theories and
provide a simpler set of equations which retain the essential
mathematical structure of the microscopic theory [57, 98].

Applying the isotropic approximation (77) to the
microscopic ITT-MCT expression for the stress (66) enables
the angular integrals to be performed explicitly, leading to the
simplified form

σ (t) =
∫ t

−∞
dt ′

[
− ∂

∂ t ′
B(t, t ′)

]
G(t, t ′), (79)

where B is the Finger tensor and an explicit expression for
G(t, t ′) may be found in [18]. By disregarding all wavevector
dependence the modulus can be expressed in terms of a single-
mode transient density correlator

G(t, t ′) = vσ �2(t, t ′) (80)

where vσ = G(t, t) is a parameter measuring the strength
of stress fluctuations (typically taking values of the order
100kBT/R3 for hard-sphere-like colloids). A schematic
equation-of-motion for �(t, t ′) may be obtained by neglecting
the wavevector dependence of the microscopic expression (68),
leading to

�̇(t, t ′)+�

(
�(t, t ′)+

∫ t

t ′
ds m(t, s, t ′)�̇(s, t ′)

)
= 0, (81)

where the single decay rate � simply sets the timescale and
may thus be set to unity. Experience with the construction of
schematic MCT models both in the quiescent [98] and steady
shear cases [57] combined with analysis of the way in which
strain enters the microscopic memory (69) lead to the following
schematic ansatz for the memory function

m(t, t ′, t0) = h(t, t0) h(t, t ′) [ν1�(t, t ′)+ ν2�
2(t, t ′)]. (82)

The parameters ν1 and ν2 represent in an unspecified way the
role of Sq in the microscopic theory and, following standard
MCT practice, are given by v2 = 2 and v1 = 2(

√
2 − 1) +

ε/(
√

2− 1). The separation parameter ε encodes the distance
from the glass transition, with negative values corresponding
to fluid states and positive values corresponding to glass states.
Finally, the h-function is given by

h(t, t0) = γ 2
c

γ 2
c + ν(I1(t, t0)− 3)+ (1− ν)(I2(t, t0)− 3)

,

(83)
where γc sets the strain scale (typically γc ≈ 10%) and ν

is a mixing parameter (0 < ν < 1). The invariants of
the Finger tensor, I1 = TrB and I2 = TrB−1 incorporate
the fluidizing influence of flow into the memory function.
Requiring that flow enter via the Finger tensor alone guarantees
that the resulting schematic theory is material objective (see
section 2.3), consistent with the fully microscopic theory.

The schematic expression for the stress (79) is closely
related to the Lodge equation of continuum mechanics (see
section 2.1). Integrating equation (79) by parts yields

σ (t) =
∫ t

−∞
dt ′ B(t, t ′)

(
∂

∂ t ′
�2(t, t ′)

)
. (84)

Comparison of this expression with equation (5) shows that
the present schematic theory goes considerably beyond the
standard Lodge equation by incorporating memory which is
both nonexponential and a function of two time arguments,
reflecting the loss of time-translational invariance under time-
dependent flow. Replacing the correlator with a simple
exponential trivially recovers the Lodge equation (5).

The tensorial schematic theory given by equations (79)–
(83) has been applied to predict flow curves under shear
and extensional flow, normal stresses under shear and the
transient stress response to step strain. In all cases
tested so far the predictions of the schematic model are in
good qualitative agreement with those available from the
microscopic theory using the isotropic approximation (77) in
three dimensions [16, 17, 57, 135] and exact numerical solution
in two dimensions [75]. The schematic theory predicts a
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Figure 15. The state of stress of a material under applied force can be represented by a point in the three-dimensional space of principal
stresses. The cylinder shown here is the surface defined by the von Mises criterion (86). Stress states lying within the cylinder are deformed
by the applied stress, but do not yield, whereas states outside the cylinder exhibit plastic flow. Due to invariance along the ‘hydrostatic’ axis
s1 = s2 = s3 (arising from incompressibility) the yield surface is usually viewed in the ‘deviatoric’ plane perpendicular to this (the lower left
representation in this figure).

positive value for the first normal stress difference N1 =
σxx − σyy under shear flow in accord with microscopic ITT-
MCT calculations. On the other hand, the second normal
stress difference N2 = σyy − σzz is from equation (79)
identically zero, in disagreement with both analytical low Pe
analysis of the pair Smoluchowski equation [154] and colloidal
experiments [207] (finite negative values are found). The
disappearance of N2 from the schematic theory can be traced
back to the isotropic approximation leading to equation (79)
which effectively kills off this feature of the fully microscopic
theory.

7.8. Yield stress surface

A striking feature of the theory developed in [18] is that it
permits direct calculation of a dynamic yield stress surface for
glasses. Related static yield surfaces have been empirically
postulated and employed for over a century in the engineering
community to study the yielding of amorphous solids (see
also section 5.4). The two classical criteria for determining
the onset of plastic yield are due to Tresca [208] and von
Mises [209]. The Tresca criterion asserts that a material will
yield when the maximum shear stress due to the deformation
exceeds a critical value. Recalling that an external force
imposed on a material can be represented as a stress tensor

which can be diagonalized to obtain values for the three
principal stresses s1, s2 and s3, the Tresca criterion can be
compactly stated in the form [210]

Max(|s1 − s2|, |s2 − s3|, |s1 − s3|) =
√

3 σ y
ss , (85)

where σ
y

ss is the shear stress at yield under a simple shear
deformation. According to equation (85) knowledge of σ

y
ss

is thus sufficient to determine the mechanical stability of a
material under an arbitrary applied force. Alternatively, the
von Mises criterion requires that the distortion strain energy
exceeds a critical value at yield [210]

1
6 ((s1 − s2)

2 + (s2 − s3)
2 + (s1 − s3)

2) = (σ y
ss)

2. (86)

Both the Tresca and von Mises criteria have proven to be
in reasonable qualitative agreement with yield experiments
on crystalline metals11. Two main assumptions underly
equations (85) and (86): (i) the microscopic rearrangements
leading to plastic deformation do not lead to significant dilation
of the material, (ii) that residual stresses arising from the
deformation history of the sample do not influence the yielding
(i.e. there is no Bauschinger effect).

11 There is a useful short discussion of the von Mises, Tresca and generalized
pressure dependent yield criteria in metals in section 4.2.3.3 of [211].
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Figure 16. Left panel: the dynamical yield surface from ITT-MCT [18] for a glass with ε ≈ 3(φ − φgt) = 10−3, where φgt is the volume
fraction at the hard-sphere glass transition, in the space of principal stresses (s1, s2, s3) as viewed along the hydrostatic axis s1 = s2 = s3

(stress in units of kBT/(2R)3). The red points correspond to planar extensional flow and the blue points to uniaxial extensional flow. Right
panel: a closer view reveals that the surface is not a perfectly circular cylinder (as predicted by the von Mises criterion for static yielding) and
that maximal deviation from circularity occurs at points of pure uniaxial extension. These deviations are connected with the existence of finite
normal stress differences.

It is useful to interpret equation (86) geometrically in
the space of principal stresses, where it describes a surface
separating elastically deformed states from states of plastic
flow. Equation (86) defines a circular cylinder with axis along
the line s1 = s2 = s3 and radius

√
2 σ

y
ss . The symmetry

about this ‘hydrostatic’ axis is a geometrical reflection of the
fact that the yield condition (86) is independent of hydrostatic
pressure. The plane which passes through the origin and
which lies perpendicular to the cylinder axis is the so-
called deviatoric plane. All yield stress surfaces which are
independent of hydrostatic pressure may be projected without
loss of information onto the deviatoric plane. In the case of
the von Mises and Tresca criteria this generates a circle (see
figure 15) and a hexagon, respectively.

The results presented in [18] reveal intriguing connections
between the static yielding discussed above and dynamic yield,
as determined from the Pe → 0 values of the flow curves.
Within the ITT-MCT approach, for any given steady flow field
(e.g. shear, uniaxial extension) there exists for glassy states a
finite stress tensor in the limit of vanishing flow rate. This
stress tensor at yield may be diagonalized to obtain three
eigenvalues and plotted as a point in the Cartesian space of
principal stresses. By considering all possible nondegenerate
flows (made possible by a suitable parameterization of the
velocity gradient tensor [18]) a closed locus of points may
be constructed in the space: the dynamic yield stress surface.
In [18] this procedure was realized using the schematic model
equations (79)–(83).

In figure 16 we show the deviatoric projection of the
dynamical yield stress surface of a colloidal glass, as predicted
by the schematic model. To a first approximation the
numerically calculated dynamical yield surface from the theory
agrees well with the empirical von Mises criterion for static
yield (86). However, closer inspection (see figure 16, right
panel) reveals that deviations at around the per cent level occur,
with the maximal deviation located at points of pure uniaxial
extension. A careful analysis of the schematic equations
reveals that this fine structure of the surface can be attributed
to the existence of a finite first normal stress difference [18].

Expanding the schematic model result to first order in N y
1 ,

the first normal stress difference at yield, provides an explicit
expression for the schematic model yield surface [18]

1
6 ((s1 − s2)

2 + (s2 − s3)
2 + (s1 − s3)

2) = (σ y
ss)

2

+ 1

12
(N y

1 )2 + 3(1− A2)

(3+ A2)3/2
N y

1 σ y
ss, (87)

where 0 < A < 1 parameterizes the geometry of the imposed
flow. Equation (87) thus describes a noncircular cylinder with
a radius which varies according to the value of the parameter
A, each value of which corresponds to a given azimuthal
angle about the hydrostatic axis. Higher order terms in the
expansion (87) exist (and can be explicitly calculated) but
remain numerically negligible due to the smallness of N1/σ

y
ss.

Very recent experiments on yielding soft materials have
attempted to determine the shape of the yield surface [212].
The novel rheometer employed in [212] applies a combined
squeeze and rotational shear flow to a material sample
loaded between two parallel plates. The claim is that by
independently varying the rotation and squeeze rate it may
become possible to explore the entire family of flows in a way
analogous to the mathematical parameterization of the velocity
gradient tensor employed in [18] to calculate the schematic
model yield surface. However, it remains uncertain whether
the superposition of two shear flows (radial Poiseuille and
tangential homogeneous shear) is really sufficient to map the
yield surface. Figure 17 shows experimental data taken using
three different yielding materials: a Carbopol gel and two
different emulsions [212].

The yield data are shown in the rotational shear stress
(τrθ ), squeeze shear stress (τrz) plane. While the data shown in
figure 17 are not inconsistent with the von Mises criteria, it may
well be that the chosen superposition flow actually constrains
the surface to be spherical, regardless of the true form of the
yield surface. It would certainly be remarkable if the soft
materials considered in [212] obey yield criteria developed
for crystalline solids, despite the very different underlying
microscopic plasticity mechanisms [213].
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Figure 17. The yield stress surface in the τrθ (rotational shear stress),
τrz (squeeze shear stress) plane, where the stresses have been scaled
by the yield stress τc in simple shear. The blue and red squares show
results for two different emulsions with differing values of τc (28 and
52 Pa). The green squares are data taken using a carbopol gel
(τc = 70 Pa). In this representation the von Mises criterion (86)
becomes a circle and is indicated by the solid line. Reprinted by
permission from MacMillan Publishers Ltd: Nat. Mater. 9 115,
copyright (2010).

Whether the microscopic theory (equations (68)–(70))
indeed predicts a similar dynamic yield surface, as expected,
and its relationship to static yielding in glassy materials remain
important open problems. Nevertheless, the results from the
schematic model are promising and represent a considerable
step towards a microscopic derivation of material specific yield
surfaces from first-principles.

8. Outlook

In this review we have attempted to provide an overview of the
rheological phenomenology presented by colloidal dispersions
and to outline some of the leading theoretical approaches
aiming to rationalize this. It is clear that much remains to
be done and that existing theories have met with only partial
success in solving the complex many-body problem of driven,
strongly interacting colloidal systems. We hope that both the
presentation and choice of topics contained within the present
work serve to emphasize the common ground between different
theories (continuum mechanics, pair Smoluchowski treatments
and Green–Kubo based approaches), as well as to highlight
where progress still needs to be made.

One of the clear deficiencies of approximate closures of
the pair Smoluchowski equation is their apparent inability
to describe, even qualitatively, the slow structural relaxation
time present in colloidal dispersions at finite volume fraction.
This failing is inherent in the Markovian character of the
approximate closures, which follows as a natural consequence
of applying equilibrium statistical mechanical relations to
connect pair and triplet correlation functions. A clear
challenge to future theories which attempt to improve this

situation is thus to tackle directly the intrinsic difference
between nonequilibrium and equilibrium by confronting the
irreducible term (see equation (46)) containing the missing
physics. Moreover, the existing numerical data in the literature
are restricted, largely for technical reasons, to the low Pe
limit. While this enables interesting analysis of the zero-shear
viscosity and leading order microstructural distortion, there is
an absence of data for the nonlinear rheology as a function of
Pe.

Despite the success of the ITT-MCT approach in
describing the nonlinear response of states close to dynamic
arrest, there remain gaps in the theoretical formulation which
should be filled and many fundamental questions are yet
to be addressed. A notable omission is that the present
formulation of the theory does not enable incorporation of
hydrodynamic interactions. The influence of hydrodynamics
on the rheology of densely packed glassy states is largely
unexplored and their incorporation into the theory, even at a
crude approximate level, would therefore be of considerable
interest. Moreover, due to the recent nature of the ITT-
MCT theory and the complexity of numerically solving the
equations, many flows of rheological interest remain to be
explored in detail. Of particular importance is to assess the
predictions of the theory for nonsteady flows where interesting
interaction effects between yielding and the time-dependent
strain field may be envisaged (e.g. large amplitude oscillatory
shear, where higher harmonics will contribute to the stress
response).
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[206] Fredrickson G H and Larson R G 1987 J. Chem. Phys.

86 1553
[207] Frank M, Anderson D, Weeks E R and Morris J F 2003

J. Fluid Mech. 493 363
[208] Tresca H 1854 C. R. Acad. Sci. Paris 59 754
[209] von Mises R 1913 Göttinger Nachrichten, Math.—Phys.

Klasse 582
[210] Hill R 1971 The Mathematical Theory of Plasticity (Oxford:

Oxford University Press)
[211] Schuh C A, Hufnagel T C and Ramamurty U 2007 Acta

Mater. 55 4067
[212] Ovarlez G, Barrel Q and Coussot P 2010 Nat. Mater. 9 115
[213] Schall P, Weitz D A and Spaepen F 2007 Science 318 1895

36

ht
tp
://
do
c.
re
ro
.c
h


