255 research outputs found
Neutron cross-sections for advanced nuclear systems: the n_TOF project at CERN
E2C 2013 – 3rd European Energy ConferenceThe study of neutron-induced reactions is of high relevance in a wide variety of fields, ranging from stellar nucleosynthesis and fundamental nuclear physics to applications of nuclear technology. In nuclear energy, high accuracy neutron data are needed for the development of Generation IV fast reactors and accelerator driven systems, these last aimed specifically at nuclear waste incineration, as well as for research on innovative fuel cycles. In this context, a high luminosity Neutron Time Of Flight facility, n_TOF, is operating at CERN since more than a decade, with the aim of providing new, high accuracy and high resolution neutron cross-sections. Thanks to the features of the neutron beam, a rich experimental program relevant to nuclear technology has been carried out so far. The program will be further expanded in the near future, thanks in particular to a new high-flux experimental area, now under constructio
Recent results in nuclear astrophysics at the n_TOF facility at CERN
The neutron time of flight (n_TOF) facility at CERN is a spallation source characterized by a white neutron spectrum. The innovative features of the facility, in the two experimental areas, (20 m and 185 m), allow for an accurate determination of the neutron cross section for radioactive samples or for isotopes with small neutron capture cross section, of interest for Nuclear Astrophysics. The recent results obtained at n_TOF facility are presented
Measurement of the 70Ge(n,γ) cross section up to 300 keV at the CERN n_TOF facility
Neutron capture data on intermediate mass nuclei are of key importance to nucleosynthesis in the weak component of the slow neutron capture processes, which occurs in massive stars. The (n,γ) cross section on 70Ge, which is mainly produced in the s process, was measured at the neutron time-of-flight facility n_TOF at CERN. Resonance capture kernels were determined up to 40 keV neutron energy and average cross sections up to 300 keV. Stellar cross sections were calculated from kT =5 keV tokT =100 keV and are in very good agreement with a previous measurement by Walter and Beer (1985) and recent evaluations. Average cross sectionsareinagreementwithWalterandBeer(1985)overmostoftheneutronenergyrangecovered,whilethey aresystematicallysmallerforneutronenergiesabove150keV.Wehavecalculatedisotopicabundancesproduced in s-process environments in a 25 solar mass star for two initial metallicities (below solar and close to solar). While the low metallicity model reproduces best the solar system germanium isotopic abundances, the close to solar model shows a good global match to solar system abundances in the range of mass numbers A=60–80.Austrian Science Fund J3503Adolf Messer Foundation ST/M006085/1European Research Council ERC2015-StGCroatian Science Foundation IP-2018-01-857
Measurement of the α ratio and (n, γ) cross section of 235U from 0.2 to 200 eV at n_TOF
We measured the neutron capture-to-fission cross-section ratio (α ratio) and the capture cross section of 235U
between 0.2 and 200 eV at the n_TOF facility at CERN. The simultaneous measurement of neutron-induced
capture and fission rates was performed by means of the n_TOF BaF2 Total Absorption Calorimeter (TAC), used
for detection of γ rays, in combination with a set of micromegas detectors used as fission tagging detectors.
The energy dependence of the capture cross section was obtained with help of the 6
Li(n,t) standard reaction
determining the n_TOF neutron fluence; the well-known integral of the 235U(n, f ) cross section between 7.8
and 11 eV was then used for its absolute normalization. The α ratio, obtained with slightly higher statistical
fluctuations, was determined directly, without need for any reference cross section. To perform the analysis
of this measurement we developed a new methodology to correct the experimentally observed effect that the
probabilities of detecting a fission reaction in the TAC and the micromegas detectors are not independent. The
results of this work have been used in a new evaluation of 235U performed within the scope of the Collaborative
International Evaluated Library Organisation (CIELO) Project, and are consistent with the ENDF/B-VIII.0 and
JEFF-3.3 capture cross sections below 4 eV and above 100 eV. However, the measured capture cross section is
on average 10% larger between 4 and 100 eV.Ministerio de Economía, Industria y Competitividad de España. FPA2014-53290-C2-1, FPA2016-76765- P y FPA2017-82647-P7º Programa Marco CHANDA de la Comisión Europea. FP7-60520
Investigation of the 240Pu(n, f ) reaction at the n_TOF/EAR2 facility in the 9 meV–6 MeV range
Background: Nuclear waste management is considered amongst the major challenges in the field of nuclear energy. A possible means of addressing this issue is waste transmutation in advanced nuclear systems, whose operation requires a fast neutron spectrum. In this regard, the accurate knowledge of neutron-induced reaction cross sections of several (minor) actinide isotopes is essential for design optimization and improvement of safety margins of such systems. One such case is
240
Pu
, due to its accumulation in spent nuclear fuel of thermal reactors and its usage in fast reactor fuel. The measurement of the
240
Pu
(
n
,
f
)
cross section was previously attempted at the CERN n_TOF facility EAR1 measuring station using the time-of-flight technique. Due to the low amount of available material and the given flux at EAR1, the measurement had to last several months to achieve a sufficient statistical accuracy. This long duration led to detector deterioration due to the prolonged exposure to the high
α
activity of the fission foils, therefore the measurement could not be successfully completed.
Purpose: It is aimed to determine whether it is feasible to study neutron-induced fission at n_TOF/EAR2 and provide data on the
240
Pu
(
n
,
f
)
reaction in energy regions requested for applications.
Methods: The study of the
240
Pu
(
n
,
f
)
reaction was made at a new experimental area (EAR2) with a shorter flight path which delivered on average 30 times higher flux at fast neutron energies. This enabled the measurement to be performed much faster, thus limiting the exposure of the detectors to the intrinsic activity of the fission foils. The experimental setup was based on microbulk Micromegas detectors and the time-of-flight data were analyzed with an optimized pulse-shape analysis algorithm. Special attention was dedicated to the estimation of the non-negligible counting loss corrections with the development of a new methodology, and other corrections were estimated via Monte Carlo simulations of the experimental setup.
Results: This new measurement of the
240
Pu
(
n
,
f
)
cross section yielded data from
9
meV
up to
6
MeV
incident neutron energy and fission resonance kernels were extracted up to
10
keV
.
Conclusions: Neutron-induced fission of high activity samples can be successfully studied at the n_TOF/EAR2 facility at CERN covering a wide range of neutron energies, from thermal to a few MeV.Croatian Science Foundation 857
Measurement of the 72 Ge ( n , γ ) cross section over a wide neutron energy range at the CERN n_TOF facility
The
72
Ge
(
n
,
γ
)
cross section was measured for neutron energies up to
300
keV
at the neutron time-of-flight facility
n
_
TOF
(CERN), Geneva, for the first time covering energies relevant to heavy-element synthesis in stars. The measurement was performed at the high-resolution beamline EAR-1, using an isotopically enriched
72
Ge
O
2
sample. The prompt capture
γ
rays were detected with four liquid scintillation detectors, optimized for low neutron sensitivity. We determined resonance capture kernels up to a neutron energy of
43
keV
, and averaged cross sections from 43 to
300
keV
. Maxwellian-averaged cross section values were calculated from
k
T
=
5
to
100
keV
, with uncertainties between
3.2
%
and
7.1
%
. The new results significantly reduce uncertainties of abundances produced in the slow neutron capture process in massive stars.Austrian Science Fund (FWF) J3503Science and Technology Facilities Council UK. ST/M006085/1European Research Council (ERC) 2015-STG No.677497Croatian Science Foundation. 8570Ministry of Education, Youth and Sport of the Czech Republic (MSMT) y the Charles University. UNCE/SCI/01
First results of the 241Am(n,f) cross section measurement at the Experimental Area 2 of the n_TOF facility at CERN
Feasibility, design and sensitivity studies on innovative nuclear reactors that could address the issue of nuclear waste transmutation using fuels enriched in minor actinides, require high accuracy cross section data for a variety of neutron-induced reactions from thermal energies to several tens of MeV. The isotope 241Am (T1/2= 433 years) is present in high-level nuclear waste (HLW), representing about 1.8 % of the actinide mass in spent PWR UOx fuel. Its importance increases with cooling time due to additional production from the β-decay of 241Pu with a half-life of 14.3 years. The production rate of 241 Am in conventional reactors, including its further accumulation through the decay of 241Pu and its destruction through transmutation/incineration are very important parameters for the design of any recycling solution. In the present work, the 241 Am(n,f) reaction cross-section was measured using Micromegas detectors at the Experimental Area 2 of the n_TOF facility at CERN. For the measurement, the 235U(n,f) and 238U(n,f) reference reactions were used for the determination of the neutron flux. In the present work an overview of the experimental setup and the adopted data analysis techniques is given along with preliminary results
High-accuracy determination of the neutron flux in the new experimental area n_TOF-EAR2 at CERN
A new high flux experimental area has recently become operational at the n_TOF facility at CERN. This new measuring station, n_TOF-EAR2, is placed at the end of a vertical beam line at a distance of approximately 20m from the spallation target. The characterization of the neutron beam, in terms of flux, spatial profile and resolution function, is of crucial importance for the feasibility study and data analysis of all measurements to be performed in the new area. In this paper, the measurement of the neutron flux, performed with different solid-state and gaseous detection systems, and using three neutron-converting reactions considered standard in different energy regions is reported. The results of the various measurements have been combined, yielding an evaluated neutron energy distribution in a wide energy range, from 2meV to 100MeV, with an accuracy ranging from 2%, at low energy, to 6% in the high-energy region. In addition, an absolute normalization of the n_TOF-EAR2 neutron flux has been obtained by means of an activation measurement performed with 197Au foils in the beam.Peer reviewe
Measurement of 73 Ge(n,γ) cross sections and implications for stellar nucleosynthesis
© 2019 The Author(s). Published by Elsevier B.V.73 Ge(n,γ) cross sections were measured at the neutron time-of-flight facility n_TOF at CERN up to neutron energies of 300 keV, providing for the first time experimental data above 8 keV. Results indicate that the stellar cross section at kT=30 keV is 1.5 to 1.7 times higher than most theoretical predictions. The new cross sections result in a substantial decrease of 73 Ge produced in stars, which would explain the low isotopic abundance of 73 Ge in the solar system.Peer reviewe
- …