226 research outputs found

    Strategic Framework to Maintenance Decision Support Systems

    Get PDF
    AbstractIn current global markets the maintenance can be considered key to assurance the required function of equipments and low life cycle costs of productive equipments. In this context, the Maintenance Decision Support Systems can be relevant as strategic framework. Accordingly, in this paper, the main objective is integrating the strategic functions with Balanced Score-Card, using the Analytic Hierarchy Process, where the Key Performance Indicators are associated to goals of company. The core of this purpose is to maximize the efficiency of the plant through maintenance. The decisional problem has been modelled with four production areas, as alternatives, that were pre-selected by experts. Commercial package Expert Choice has been used to model the problem and to analyse the results. A purely strategic approach has been followed to maintenance in the industrial business; results serve as input in tactical scope

    Zirconium Metal-Organic Polyhedra with Dual Behavior for Organophosphate Poisoning Treatment

    Get PDF
    Organophosphate nerve agents and pesticides are extremely toxic compounds because they result in acetylcholinesterase (AChE) inhibition and concomitant nerve system damage. Herein, we report the synthesis, structural characterization, and proof-of-concept utility of zirconium metal-organic polyhedra (Zr-MOPs) for organophosphate poisoning treatment. The results show the formation of robust tetrahedral cages [((n-butylCpZr)3(OH)3O)4L6]Cl6(Zr-MOP-1; L = benzene-1,4-dicarboxylate, n-butylCp = n-butylcyclopentadienyl, Zr-MOP-10, and L = 4,4′-biphenyldicarboxylate) decorated with lipophilic alkyl residues and possessing accessible cavities of ∼9.8 and ∼10.7 Å inner diameters, respectively. These systems are able to both capture the organophosphate model compound diisopropylfluorophosphate (DIFP) and host and release the AChE reactivator drug pralidoxime (2-PAM). The resulting 2-PAM@Zr-MOP-1(0) host-guest assemblies feature a sustained delivery of 2-PAM under simulated biological conditions, with a concomitant reactivation of DIFP-inhibited AChE. Finally, 2-PAM@Zr-MOP systems have been incorporated into biocompatible phosphatidylcholine liposomes with the resulting assemblies being non-neurotoxic, as proven using neuroblastoma cell viability assays

    Heterometallic Titanium-Organic Frameworks as Dual Metal Catalysts for Synergistic Non-Buffered Hydrolysis of Nerve Agent Simulants

    Get PDF
    Heterometallic metal-organic frameworks (MOFs) can offer important advantages over their homometallic counterparts to enable targeted modification of their adsorption, structural response, electronic structure, or chemical reactivity. However, controlling metal distribution in these solids still remains a challenge. The family of mesoporous titanium-organic frameworks, MUV-101(M), displays heterometallic TiM2 nodes assembled from direct reaction of Ti(IV) and M(II) salts. We use the degradation of nerve agent simulants to demonstrate that only TiFe2 nodes are capable of catalytic degradation in non-buffered conditions. By using an integrative experimental-computational approach, we rationalize how the two metals influence each other, in this case, for a synergistic mechanism reminiscent of bimetallic enzymes. Our results highlight the importance of controlling metal distribution at an atomic level to span the interest of heterometallic MOFs to a broad scope of cascade or tandem reactions. Summary Mixed-metal or heterometallic metal-organic frameworks (MOFs) are gaining importance as a route to produce materials with increasing chemical and functional complexities. We report a family of heterometallic titanium frameworks, MUV-101(M), and use them to exemplify the advantages of controlling metal distribution across the framework in heterogeneous catalysis by exploring their activity toward the degradation of a nerve agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of diisopropyl-fluorophosphate (DIFP) in non-buffered aqueous media. This activity cannot be explained only by the association of two metals, but to their synergistic cooperation, to create a whole that is more efficient than the simple sum of its parts. Our simulations suggest a dual-metal mechanism reminiscent of bimetallic enzymes, where the combination of Ti(IV) Lewis acid and Fe(III)–OH Brönsted base sites leads to a lower energy barrier for more efficient degradation of DIFP in absence of a base.Financial support for this work was provided by the Marie Skłodowska-Curie Global Fellowships (749359-EnanSET, N.M.P) within the European Union research and innovation framework programme (2014-2020

    Effect of Linker Distribution in the Photocatalytic Activity of Multivariate Mesoporous Crystals

    Get PDF
    The use of Metal-Organic Frameworks as crystalline matrices for the synthesis of multiple component or multivariate solids by the combination of different linkers into a single material has emerged as a versatile route to tailor the properties of single-component phases or even access new functions. This approach is particularly relevant for Zr6-MOFs due to the synthetic flexibility of this inorganic node. However, the majority of materials are isolated as polycrystalline solids, which are not ideal to decipher the spatial arrangement of parent and exchanged linkers for the formation of homogeneous structures or heterogeneous domains across the solid. Here we use high-throughput methodologies to optimize the synthesis of single crystals of UiO-68 and UiO-68-TZDC, a photoactive analogue based on a tetrazine dicarboxylic derivative. The analysis of the single linker phases reveals the necessity of combining both linkers to produce multivariate frameworks that combine efficient light sensitization, chemical stability, and porosity, all relevant to photocatalysis. We use solvent-assisted linker exchange reactions to produce a family of UiO-68-TZDC% binary frameworks, which respect the integrity and morphology of the original crystals. Our results suggest that the concentration of TZDC in solution and the reaction time control the distribution of this linker in the sibling crystals for a uniform mixture or the formation of core-shell domains. We also demonstrate how the possibility of generating an asymmetric distribution of both linkers has a negligible effect on the electronic structure and optical band gap of the solids but controls their performance for drastic changes in the photocatalytic activity toward proton or methyl viologen reduction.This work was supported by the EU (ERC Stg Chem-fs-MOF 714122) and Spanish government (CTQ2017-83486-P, RTI2018-098568-A-I00, RYC-2016-1981, CEX2019-000919-M, PID2019-106383GB-C44/AEI/10.13039/501100011033 and RTI2018-098568-A-I00). B.L.-B. thanks the Spanish government for a FPU (FPU16/04162). S.T. thanks the Spanish government for a Ramón y Cajal Fellowship (RYC-2016-60719817). N.M.P. thanks the European Union for a Marie Skłodowska-Curie Global Fellowship (H2020-MSCA-IF-2016-GF-749359-EnanSET). J.G.P. thanks to the SIDIX at Servicios Generales de Apoyo a la Investigación (SEGAI) at La Laguna University. We also thank BSC-RES for computational resources (QS-2020-2-0024) and the University of Valencia for research facilities (Tirant and NANBIOSIS).Peer reviewe

    Exchange flow between open water and floating vegetation

    Get PDF
    This study describes the exchange flow between a region with open water and a region with a partial-depth porous obstruction, which represents the thermally-driven exchange that occurs between open water and floating vegetation. The partial-depth porous obstruction represents the root layer, which does not penetrate to the bed. Initially, a vertical wall separates the two regions, with fluid of higher density in the obstructed region and fluid of lower density in the open region. This density difference represents the influence of differential solar heating due to shading by the vegetation. For a range of root density and root depths, the velocity distribution is measured in the lab using PIV. When the vertical wall is removed, the less dense water flows into the obstructed region at the surface. This surface flow bifurcates into two layers, one flowing directly through the root layer and one flowing beneath the root layer. A flow directed out of the vegetated region occurs at the bed. A model is developed that predicts the flow rates within each layer based on energy considerations. The experiments and model together suggest that at time- and length-scales relevant to the field, the flow structure for any root layer porosity approaches that of a fully blocked layer, for which the exchange flow occurs only beneath the root layer.National Science Foundation (U.S.) (grant EAR0509658

    Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

    Get PDF
    Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.This work was funded by the National Institutes of Health (NIH/NCI) P50-CA97248 (University of Michigan Head and Neck SPORE)

    Serine-Selective Bioconjugation.

    Get PDF
    This Communication reports the first general method for rapid, chemoselective, and modular functionalization of serine residues in native polypeptides, which uses a reagent platform based on the P(V) oxidation state. This redox-economical approach can be used to append nearly any kind of cargo onto serine, generating a stable, benign, and hydrophilic phosphorothioate linkage. The method tolerates all other known nucleophilic functional groups of naturally occurring proteinogenic amino acids. A variety of applications can be envisaged by this expansion of the toolbox of site-selective bioconjugation methods

    Increased Expression of Musashi-1 Evidences Mesenchymal Repair in Maxillary Sinus Floor Elevation

    Get PDF
    This study aimed to analyze the expression of Musashi-1 (MSI1) in maxillary native bone and grafted bone after maxillary sinus floor elevation. To do so, fifty-seven bone biopsies from 45 participants were studied. Eighteen samples were collected from native bone while 39 were obtained 6 months after maxillary sinus grafting procedures. Musashi-1 was analyzed by immunohistochemistry and RT-PCR. MSI1 was detected in osteoblasts and osteocytes in 97.4% (38/39) of grafted areas. In native bone, MSI1 was detected in only 66.6% (12/18) of the biopsies, mainly in osteocytes. Detection of MSI1 was significantly higher in osteoprogenitor mesenchymal cells of grafted biopsies (p < 0.001) but minor in smooth muscle and endothelial cells; no expression was detected in adipocytes. The mesenchymal cells of the non-mineralized tissue of native bone showed very low nuclear expression of MSI1, in comparison to fusiform cells in grafted areas (0.28(0.13) vs. 2.10(0.14), respectively; p < 0.001). Additionally, the detection of MSI1 mRNA was significantly higher in biopsies from grafted areas than those from native bone (1.00(0.51) vs. 60.34(35.2), respectively; p = 0.029). Thus, our results regardig the significantly higher detection of Musashi-1 in grafted sites than in native bone reflects its importance in the remodeling/repair events that occur after maxillary sinus floor elevation in humans.This investigation was partially supported by Research Groups #CTS-138 and #CTS-1028 (Junta de Andalucía, Spain). MPM was supported by the Andalucía Talent Hub Program from the Andalusian Knowledge Agency (co-funded by the European Union’s Seventh Framework Program, Marie Skłodowska-Curie actions (COFUND – Grant Agreement n° 291780) and the Ministry of Economy, Innovation, Science and Employment of the Junta de Andalucía)
    corecore