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Heterometallic or mixed-metal Metal-Organic Frameworks (MOFs), incorporating two or 
more metal ions to the inorganic node of the frameworks, are increasingly gaining 
importance as a route to produce materials with increasing chemical and functional 
complexity. Heterometallic MOFs can offer important advantages over their 
homometallic counterparts to enable targeted modification of the adsorption 
properties, structural response, electronic structure or chemical reactivity of the 
framework. This field is still in its infancy likely due to the difficulties of controlling the 
formation of heterometallic nodes by direct synthesis. This restriction is even more 
acute in the case of titanium frameworks for which their challenging chemistry renders 
post-synthetic doping of preformed materials as the only route available. However, this 
often results in partial or non-homogeneous metal substitution in detriment of the 
potential benefits of controlling metal distribution at an atomic level toward 
performance improvement. We report the first family of heterometallic titanium 
frameworks that can be prepared by direct synthesis from metal precursors and 
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trimesic acid. MUV-101 frameworks [TiM2(µ3-O)(O2CR)6X3] (M = Mg, Fe, Co, Ni; X = H2O, 
OH-, O2-) combine mesoporosity with good chemical stability. We use these materials to 
exemplify the advantages of controlling metal distribution across the framework in 
heterogeneous catalysis by exploring their activity toward the degradation of a nerve 
agent simulant of Sarin gas. MUV-101(Fe) is the only pristine MOF capable of catalytic 
degradation of (diisopropyl-fluorophosphate) DIFP in non-buffered aqueous media 
without the presence of a basic/nucleophilic co-catalyst. Compared to MUV-101(Fe), 
other titanium heterometallic and homometallic MOFs as MUV-101(Mg, Co and Ni), MUV-
10(Mn), MIL-100(Ti and Fe) or UiO-66(Zr), all display a poorer performance or are 
poisoned by the degradation products. The catalytic activity of MUV-101(Fe) cannot be 
explained only by the association of Ti(IV) and Fe(III) but to their synergistic 
cooperation. Our simulations suggest that the combination of Ti(IV) Lewis acid and 
Fe(III)-OH Brönsted base sites in this dual metal catalyst leads to a much lower energy 
barrier for more efficient degradation of DIFP in absence of a base. Overall, this 
mechanism resembles the activity of the metalloenzyme purple acid phosphatase that 
displays also bimetallic active sites.  

 
Introduction 

Metal-Organic Frameworks (MOFs) have emerged as a versatile platform to access a broad 

range of applications built upon their large structural and chemical diversity.1 The unlimited 

number of combinations in which inorganic secondary building units (SBUs) can be linked to 

organic connectors by reticular design has been used to produce more than 84.000 porous 

crystalline frameworks2 for promising advances in applications as gas storage/separation,3,4 

drug delivery 5 or catalysis,6,7 to cite a few. Among these, the degradation of chemical warfare 

agents (CWAs) and their simulants8–10 has gained increasing importance since early reports 

demonstrating the high activity of Zr-MOFs in the detoxification of nerve agents.11,12,13 The 

activity of these materials originates from the presence of Zr6 nodes that combine accessible 

Lewis acid Zr(IV) and basic/nucleophilic O2-/OH- sites, capable of activating P-X (X= F, O, S) 

bonds. 

However, most detoxification studies have been carried out in the presence of basic buffers 

as N-ethylmorpholine, that behaves as a sacrificial base and a nucleophilic co-catalyst. In 

absence of this buffer, the catalyst is typically poisoned as result of the irreversible binding of 

the degradation products to the Zr(IV) active centers.14 This problem can be partially overcome 

by heterogeneization of basic/nucleophilic sites in the framework. 15,16,17–21 However, further 

improvement of CWA degradation remains limited by the intrinsic activity of the MOFs currently 

available.  
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In this regard, replacement of Zr(IV) with 

Ti(IV) might be beneficial due to its higher 

natural abundance, stronger Lewis acidity 

and strength of Ti-O bonds.22 Despite these 

promising features, the use of titanium 

organic frameworks for the degradation of 

nerve agents has been only studied from a 

theoretical standpoint.23 We argue this lack 

of experimental information is due to the 

synthetic challenges intrinsic to the 

chemistry of titanium in solution. Compared 

to Zr(IV), this narrows the synthetic 

conditions required for targeting specific 

SBUs thus restricting the assembly of 

targeted architectures.24 We have recently reported the synthesis of MIL-100(Ti).25 This 

mesoporous Ti-MOF is based on [TiIV3(µ3-O)(O2CR)6] metal-oxo clusters, also present in other 

frameworks based on trivalent metals as the archetypical MIL-100 family of Cr, Al and Fe(III),26 

or other Ti(III) frameworks as COK-6927 or MIL-101(Ti).28 Previous works point out the 

versatility of this SBUs in accommodating different metals with variable charge for a persistent 

structure director.29,30 We have demonstrated how the addition of a second metal for 

heterometallic titanium frameworks has proven an effective way to modify their photocatalytic 

activity by tuning of the band-gap without compromising stability.31 Following with this strategy, 

the combination of Ti(IV) Lewis acid sites with other metal transition ions might result in 

synergetic cooperation for more efficient degradation of CWAs. Just like purple acid 

phosphatase (PAP) metalloenzymes, that combines Fe3+ and M2+ in the active centers,32 

heterometallic Ti-MOFs might also enable dual metal catalysis for superior activity compared 

to homometallic Zr(IV) analogues.  

We demonstrate this concept for a new family of heterometallic titanium MUV-101(M) 

frameworks (M = Mg, Fe, Co and Ni) (Figure 1). These mesoporous materials can be prepared 

from direct reaction of the molecular precursors to ensure good control over the distribution of 

the metals across the structure. Compared to post-synthetic doping of preformed materials, 

that can result in partial or non-homogeneous metal substitution,33 we argue homogeneity is 

fundamental to rationalize the effect of the heteroatom over activity. Our results show that 

pristine MUV-101(Fe) displays excellent catalytic activity for the degradation of the Sarin gas 

simulant DIFP (diisopropyl fluorophosphate) in water and non-buffered conditions. This 

distinctive behaviour, that is not accessible to its homometallic counterparts or other 

Figure 1 - MUV-101 Heterometallic Titanium-
Organic Frameworks. a) Structure of the family of 

mesoporous materials MUV-101 assembled from the 

interlinking of b) heterometallic titanium clusters with 
formula [TiM2(µ3-O)(O2CR)6X3] (M = Mg, Fe, Co, Ni; 

X = H2O, OH-, O2-) and trimesate linkers. 
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heterometallic combinations, results from the synergetic cooperation of Ti(IV) and Fe(III) sites 

in close proximity for a cooperative mechanism that mimics bimetallic phosphatases. 

Results and discussion 

Heterometallic MUV-101 Titanium-Organic Frameworks. MUV-101 heterometallic 

[TiM2(µ3-O)(L)2X3] (M = Mg, Fe, Co, Ni; L = benzene-1,3,5-tricarboxylate; X = H2O, OH-, O2-) 

materials were synthesized by using similar conditions to those reported for the heterometallic 

titanium-framework MUV-10.31 In a typical experiment, titanium(IV) isopropoxide was reacted 

with benzene-1,3,5-tricarboxylic acid and the corresponding chloride metal salts in a mixture 

of N,N-dimethyl-formamide (DMF) and acetic acid (AcOH) at 120 °C (See Section S2 for 

experimental details). After 48h, the resulting microcrystalline materials were separated by 

centrifugation, washed with copious amounts of DMF and methanol (MeOH) and allowed to 

dry under reduced pressure. This synthesis can be easily scaled-up to larger volume vessels 

to produce close to 1 g of material per reaction batch.  

Phase purity of the solids was confirmed with powder X-Ray diffraction (PXRD), 

thermogravimetric analysis (TGA) and Scanning Electron Microscopy (SEM). LeBail 

refinement of the PXRDs converged in a cubic Fd-3m space group with excellent residual 

values in all cases to confirm the formation of pure crystallographic phases isostructural to 

MIL-100 (Figures 2a, S1-S2, Table S2). Rietveld refinement was performed on MUV-101(Fe) 

as a representative example of this family of heterometallic solids (Figure 2b, Table S1). TGA 

ruled out the formation of contaminant oxide phases based on the good agreement between 

the experimental and calculated weight percentages of residue that results from thermal 

decomposition of the solids in air. Compared to the homometallic MIL-100(Ti),25 the substitution 

of Ti(IV) with softer M(II) metals reduces the thermal stability of the heterometallic phases from 

450 °C down to a minimum of 350 °C (Figure S4, Table S3). As for the microscopic structure, 

SEM revealed all solids to be composed of submicrometric particles with octahedral 

morphologies and a homogeneous size dispersion of ca. 1 µm (Figures 2c, S5-S6). Energy 

Dispersive X-Ray Spectroscopy (EDX) single-point mapping measurements reveal average 

ratios close to 1:2 (Ti:M) consistent with the formation of heterometallic [TiM2(µ3-O)(O2CR)6X3] 

clusters. The homogeneous distribution of both metals throughout the solid was used to 

discard metal clustering (Figures 2d, S7-S10). To confirm the formation of heterometallic 

solids rather than segregated homometallic phases, we also ran control experiments by 

individual reaction of the linker with each metal precursor under the same conditions used for 

the synthesis of MUV-101. Whereas reactions with Mg, Co or Fe(II) led to clear solutions and 

no solid could be isolated, reaction with Ti(IV) or Ni(II) produced an amorphous solid or a 

different crystalline phase, respectively (Figure S3). These experiments suggest that the 
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simultaneous presence of Ti(IV) and M(II) metals in the reaction medium is necessary to induce 

the assembly of the heterometallic TiM2 metal-oxo clusters required for the formation of the 

framework. 

Permanent porosity of the MUV-101(M) family was analyzed with N2 isotherms at 77 K 

(Figure 2e). All solids show a reversible type-I isotherm with no hysteresis and two additional 

uptakes at P/P0 = 0.04 and 0.12, due to the filling of the two type of mesopores characteristic 

of the mesoporous structure of MIL-100. The experimental Brunauer-Emmet-Teller (BET) 

surface areas for all solids oscillate between 1840 and 2200 m2·g-1 (Figure 2e, S11-S14). 

These values are in good agreement with those described for other MIL-100 phases,34 and 

exceed the 1320 m2·g-1 reported for homometallic MIL-100(Ti). The pore size distribution 

(PSD) was calculated by Non-linear Density Functional Theory (NLDFT) methods and reveals 

two types of mesopores between 16-24 and 24-36 A" , consistent with the crystallographic 

structure refined for MUV-101(Fe). CO2 adsorption isotherms collected between 273 and 293 

K show clear differences in the adsorption profile that can be attributed to the incorporation of 

different divalent metals to the framework (Figure S15a-d). Changes are likely due to the 

different interaction of CO2 molecules with the vacant M sites generated during the activation 

of the solids by thermal heating in vacuum. The isosteric heats of adsorption vary according to 

the sequence Mg ≈ Ni > Co > Fe (Figures 2f). Similar trends have been observed for MOF-

Figure 2 - Characterization of MUV-101 heterometallic titanium-organic frameworks. a) 
Comparison of the PXRD of MUV-101(Mg, Fe, Co and Ni) solids with the pattern simulated from the 

structure refined for MUV-101(Fe). b) Rietveld refinement of MUV-101(Fe) (λ = 0.442655 Å), c) SEM 

micrograph and d) EDX mapping images of as-synthesized MUV-101(Fe) crystals. e) N2 adsorption-

desorption isotherms of MUV-101 solids at 77 K. f) Calculated isosteric heat of adsorption of CO2.   
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74 upon replacement of Mg with Ni or Co(II), 

highlighting the impact that metal substitution 

can have on tuning the selectivity of gas 

adsorption.35 

One of the main limitations of MOFs for 

broad range application is their limited 

chemical stability, in particular to water. This 

might be an issue for the degradation of nerve 

agents as these experiments generally require 

buffered aqueous solutions or the formation of 

acid molecules as the reaction product. 

Accordingly, we evaluated the hydrolytic 

stability of MUV-101 solids under acid and basic conditions (See Section S5 for details). 

Except for MUV-101(Mg) that showed very poor stability leading to complete degradation of 

the solid even in pure water (Figure S16), the PXRD profiles of the rest of materials remained 

intact after soaking during 24 hours in water solutions at pH between 2 and 12 (Figures S17-
S19). At first, this suggested good hydrolytical stability but we also collected N2 isotherms of 

the solids after the treatment to confirm this point. From a porosity standpoint, only MUV-

101(Fe) retains the original properties and can be considered stable toward the attack of water. 

MUV-101(Ni) and MUV-101(Co) suffer from a partial loss in the BET value that reaches a 

maximum of close to 60 % for the heterometallic Ni(II) phase in basic conditions (Figure S20-
S22, Tables S6-S8). We argued the higher stability of MUV-101(Fe) was probably due to the 

presence of stronger Fe(III)-O coordination bonds, less likely to undergo water hydrolysis. This 

was confirmed with Mössbauer spectroscopy measurements of MUV-101(Fe) (Figure 3, 
Table S5), that revealed the complete transformation of Fe(II) into Fe(III) in the final material. 

It is worth noting that all our attempts to synthesize heterometallic MUV-101(Fe) from Fe(III) 

salts under analogous reaction conditions were unsuccessful. This suggests the inability of 

heterometallic TiM2 SBUs to incorporate metals with higher oxidation states directly from 

solution. Just like for the case of Fe-MOF-74, the gradual oxidation of Fe(II) sites after 

incorporation to the framework is possibly more respectful with the structure formed 

originally.36 

Catalytic Activity for the Detoxification of Chemical Warfare Simulants in Non-
Buffered Conditions. Phosphonate-based nerve agents can act as inhibitors of the 

acetylcholinesterase enzyme (AChE), present in the central nervous system, by causing a 

continuous stimulation of the nerve fiber for asphyxiation and death. This family of molecules 

generally display a stereogenic P(V) center with one P=O bond and one alkyl (-R), one fluoride 

(-F) and/or –XR residues (X= O, S, N). Their degradation involves the hydrolysis of P-F or P-

Figure 3 - Mössbauer spectra of MUV-101(Fe) at 
295 and 4 K confirming the presence of Fe(III) in 

the framework. 
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XR bonds to form non-toxic phosphate or alkylphosphonic acids (Figure 4a).37 Some 

metalloenzymes, such as phosphotriesterases, are capable of hydrolyzing phosphate ester 

bonds through cooperative catalysis between the two metals that form the active site. We 

hypothesized that the combination of a Ti(IV) Lewis acid site with another metal ion in the 

heterometallic [TiM2(µ3-O)(O2C)6X3] cluster of MUV-101 might mimic the activity of the 

metalloenzyme purple acid phosphatase (PAP) that displays bimetallic Fe(III)-M(II) active sites. 

To prove our hypothesis, we tested the activity of the MUV-101 family for the degradation of 

diisopropyl-fluorophosphate (DIFP), a simulant of the Sarin nerve agent. Initial experiments 

were carried out in non-buffered aqueous solutions with an equimolar MOF:DIFP ratio (See 

Section S6 for experimental details). Figure 4b-c shows the hydrolysis reaction profiles of 

DIFP in presence of heterometallic MUV-101 and homometallic MIL-100 materials. 

Noteworthy, MUV-101(Fe) is the only one that degrades 100 % of the agent within 490 minutes 

in non-buffered aqueous solution at room temperature with a half-life time of 126 min (Figure 
4b). The half-life time can be reduced to 7 min when using an excess of catalyst (Figures S23-
S24). 31P-NMR analysis at different time intervals confirm the generation of phosphoric acid 

consistent with the hydrolytic degradation of DIFP molecules (Figure S26). Control 

experiments, ran in absence of MUV-101(Fe), confirm the inability of DIFP to degrade in the 

same experimental conditions after 48 hours. The catalytic nature of DIFP detoxification with 

MUV-101(Fe) was demonstrated by varying the MOF:DIFP ratio from 1:1 to 1:10. DIFP is fully 

degraded in all cases but the rate of transformation slows down with the concentration of the 

substrate down to a maximum half-life of 640 min for 1:10 ratio (Figure 4d). The 

heterogeneous nature of the catalytic process was also confirmed by filtrating the catalyst after 

2 hours, which resulted in an immediate drop of activity (Figure S27).  

Compared to MUV-101(Fe), MIL-100(Ti), MIL-100(Fe), MUV-101(Mg, Co, Ni), MUV-

10(Mn)31 and UiO-66(Zr),38 all display a poor performance or become poisoned by DIFP 

degradation products14 in non-buffered aqueous solutions and catalytic conditions (Figure 
S28-S29). To find out if the poor activity of the other titanium homometallic and heterometallic 

frameworks might be due to their partial degradation in the reaction conditions we examined 

their stability after 24 hours by using PXRD. Our results confirmed the stability trends in water. 

MUV-101(Mg) is not stable in the reaction conditions but the rest of solids did not show any 

sign of structural degradation and remained highly crystalline after the catalytic tests (Figure 
S31), suggesting that the poorer activity of MUV-101(Co, Ni) must have a different origin. Solid-

liquid extraction with dichloromethane after 24 hours of reaction with MUV-101(Fe) shows no 

presence of unreacted DIFP, whereas in case of homometallic MIL-100(Ti) and MIL-100(Fe) 

with DIFP allowed to recover close to 100 and 91.7 % of the nerve agent added at the 

beginning of the tests (Figure S28b), suggesting that adsorption of the guest dominates over 

degradation in the homometallic MIL-100 solids. To put our results in a more general context, 
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we have also compared our results with the performance reported for the most representative 

MOFs used in the degradation of CWAs or their simulants in different experimental conditions 

(Tables S9-S10). MUV-101(Fe) is the only pristine MOF capable of catalytic degradation of 

DIFP with no signs of catalyst poisoning in non-buffered aqueous media without the presence 

of a basic/nucleophilic co-catalyst (i.e. N-ethylmorpholine, dimethylaminoepyridine or metal-

alkoxide). This is a remarkable result in comparison with the with the state of the art Zr-MOF 

materials currently in use.21 Also important, MUV-101(Fe) can endure 3 consecutive reuses 

without substantial reduction of its catalytic activity (Figure 4e). Similar activities have been 

reported for UiO-66-0.25NH2@LiOtBu18 and NU-1000@Mg(OMe)2_1:421 but these materials 

require a pre-treatment with strong basic agents and suffer from poorer cyclability.  

Figure 4 - Detoxification of nerve agents with heterometallic MUV-101 frameworks. a) Scheme of 

the hydrolytic degradation of DIFP. b) Hydrolysis profiles of DIFP with the family MUV-101(Mg, Fe, Co 

and Ni) in water. c) Comparison of the activity of MUV-101(Fe) with homometallic MIL-100(Ti and Fe) 

d) Variation of the reaction kinetics with the MUV-101(Fe):DIFP ratio under catalytic conditions and e) 
Cyclability of MUV-101(Fe) for three consecutive catalytic tests for a fixed 1:1 ratio. 
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Overall, our findings suggest that the catalytic activity of pristine MUV-101(Fe) cannot be 

explained by the association of these two metals but to their synergistic cooperation to create 

a whole that is more efficient than the simple sum of its parts. Like bimetallic PAP enzymes 

and other biological systems, this heterometallic titanium framework seems to display the 

activity expected for a dual metal catalyst in which the two different metals, Ti(IV) and Fe(III), 

act simultaneously on two different substrates, DIFP and water, to accelerate the hydrolysis 

reaction. 

Dual Metal Synergistic Degradation Mechanism in MUV-101(Fe). To guide this study, 

we used the mechanism proposed in the literature for bimetallic PAP as a refence.32,39 The 

active center of these enzymes is based on binuclear (HO)-FeIII-(µ-OH)-MII-(H2O) units. 

Hydrolysis of phosphate esters in PAP undergoes by activation of the P=O at M(II) acting as 

a Lewis acid site whereas the neighboring Fe(III)-OH centers act as a Brönsted base, 

activating the hydrolysis of water to generate nucleophilic OH-anions that will ultimately attack 

the P(V) atom. We used computational modelling to rationalize our experimental results on the 

basis of this mechanism to understand why MUV-101(Fe) outperforms other isostructural 

homo- and heterometallic systems in the degradation of DIFP (See Section S6 for details). 

As depicted in Figure 5a, this would involve the activation of DIFP and water at neighboring 

metal sites in the framework. The steric hindrance and lack of accessible coordination sites 

revealed that hydrolysis was not possible for one single cluster, thus pointing to a cooperative 

mechanism. Hence, we modelled the interaction of the DIFP molecules between two adjacent 

SBUs in the mesoporous cage of MIL-101(Fe). By using Density Functional Theory (DFT), we 

first investigated the activation of DIFP by water displacement at the metal axial positions in 

heterometallic MUV-101(Fe, Co) and homometallic MIL-100(Fe, Ti) (Figure 5b, stage 0). For 

simplicity, we used MUV-101(Co) as representative of the poor performance of the MUV-

101(Mg, Ni, Co) phases. In a first step, DIFP molecules were allowed to interact directly with 

the metal atom upon release of the axially coordinated water molecule (Figure 5b, stages 0-
2). This competitive stage is exothermic in all cases and results in DIFP binding to the axial 

position of Ti(IV) through the P=O group, with adsorption energies (Eads) ranging from -53.1 for 

MIL-100(Ti) to -33.8 kJ mol-1 for MUV-101(Co) (Figure 6 and Table S11). In all cases, 

coordination of DIFP in Ti(IV) metal sites is clearly preferred over Co(II) or Fe(III) likely due to 

the stronger Lewis acidity of titanium. Fixation of DIFP in the axial position of Fe(III) sites in 

MIL-100(Fe) is much less favourable, -4.82 kJ mol-1, suggesting that the low performance of 

this material for the degradation of DIFP might be linked to an ineffective activation of the P=O 

bond. This value is significantly higher for MUV-101(Fe) via Fe, -11.58 kJ mol-1, but still less 

favorable than fixation to Ti(IV) which is more likely to be dominant (Figure 6). We next looked 

into the hydrolysis reaction by assuming that the nucleophilic attack of the activated Ti(IV)-

O=P(V) bond would involve a OH- anion generated by M(II/III/IV)-X (X = H2O, OH-, O2-) sites 
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in close proximity. For MUV-101(Fe), this would correspond to the transition state (TS) 

represented in Figure 5b. TS2 is a concerted step that involves the dissociation of a water 

molecule to generate nucleophilic OH- by interaction with a Fe(III)-OH site acting as a Brönsted 

base that will attack the P center in the DIFP molecule bond to the neighboring Ti(IV) acid site 

for final hydrolysis of the P-F bond (See Supplementary Movie 1 for an overview of the 

degradation mechanism). Figure 5c summarizes the calculated activation energy barriers of 

the TS for homometallic MIL-100(Ti) (200.7 kJ mol-1), MIL-100(Fe) (70.4 kJ mol-1) and 

heterometallic MUV-101(Co) (288.5 kJ mol-1) and MUV-101(Fe) (59.8 kJ mol-1) . This confirms 

that DIFP hydrolysis in MUV-101(Fe) is the most favorable of all.  

To put in context these numbers, we also compared the activation energies calculated for 

this cooperative process with those reported for the accepted mechanism of Zr(IV)-MOFs 

Figure 5 - Proposed mechanism for dual metal catalytic detoxification in heterometallic MUV-
101(Fe). a) Scheme illustrating the cooperative activation of DIFP and water at neighboring metal sites 

in the framework. b) Proposed reaction mechanism for the dual metal synergetic degradation of DIFP 
with MUV-101(Fe) involving Ti(IV) (green) and Fe(III) (orange) sites. Step 0: Initial state of reactants 

and catalyst. Transition State 1(TS1): Transition state of water displacement by DIFP molecules. Step 

1: Adsorption of DIFP on the active site of Ti(IV) ions. Transition State 2 (TS2): Transition state of the 

nuclephilic attack on the P(V) center by activated water molecules. Step 2: Release of HF. c) Reaction 

energy profile for homometallic MIL-100(Ti and Fe) (dashed lines) and heterometallic MUV-101(Fe and 

Co) (solid lines). 
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(Table S13).40 In the case of 

Zr(IV), the water displacement by 

the nerve agent is the rate 

determining step (RDS) with a 

minimum activation energy of 

91.8 kJ mol-1 for MOF-808.41 In 

our case, this process only limits 

the reactivity of MIL-100(Fe) 

whereas all MOFs containing 

Ti(IV) undertake water 

displacement quite easily, likely 

boosted by the acidity of this 

metal. In our case, RDS is the 

nucleophilic attack by a 

dissociated water molecule, that 

is much more favourable for the 

MUV-101(Fe) from the activity of 

Fe-OH sites as a Brönsted base. 

Our results suggest that the inactivity of MIL-100(Ti) and MUV-101(Co), together with the poor 

performance reported for MIP-177,23 originate from the absence of this basic site. Just like for 

PAP enzymes, the synergetic cooperation of Ti(IV) and Fe(III) centers in this dual metal catalyst 

leads to a much lower energy barrier (59.8 kJ mol-1) for more efficient degradation of DIFP in 

absence of a base.  

We also used this model to evaluate the affinity of the products of the hydrolysis to bind the 

metal active sites, which might lead to the poisoning of the catalyst for concomitant drop of the 

catalytic activity. To avoid this scenario, the adsorption energy of the reactants must be greater 

than the adsorption energy of the products derived from hydrolysis of DIFP molecules. Our 

calculations suggest that the DIFP molecules are much strongly adsorbed than the products 

(H3PO4, R-OH and HF), which can be in turn desorbed more easily in presence of water and 

reactant molecules (see Figure 6, Table S14). Adsorption of H3PO4 is slightly favourable for 

the case of MUV-101(Fe) which might result in partial competition with the activation of DIFP. 

These predictions are consistent with our inhibition tests (Figure S30). Whereas the activity of 

MUV-101(Fe) is not altered significatively in presence of an excess of fluoride, the addition of 

an equimolar amount of phosphate ions causes a drop in the reaction rate that can be 

recovered back by washing the solid in water (Figure S30b).  

Effect of the Heteroatom on the Acidity of the Framework. Our computational study 

suggests that the differences in activity for DIFP degradation are associated to the changes in 

Figure 6 - Adsorption energy of reactants and products by water 

displacement at the axial positions of Ti(IV) (green), Fe(III) 
(orange), or Co(II) (magenta) in the homo and heterometallic 

clusters of MIL-100(Ti), MIL-100(Fe), MUV-101(Fe) via Ti and via 

Fe and MUV-101(Co) via Ti and via Co. 
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basicity of the M-X sites in the 

homo- and heterometallic clusters 

of the MOFs studied. This is 

similar to the changes in the 

hydrolytic activity of PTE ascribed 

to the ability of different metals to 

modify the pKa of the bounded 

water or hydroxide molecules.32  

We argued the acidity of the 

different MIL-100 solids would be 

controlled by the Lewis acidity of 

the different metal ions and the 

changes in the axially coordinated 

capping linkers (X = H2O, OH-, O2-

) to maintain charge balance.42 

The experimental acidity of the 

solids was evaluated by 

potentiometric acid-base titrations 

(See Section S7 for experimental 

details). The density of acid centers and pKa distribution was determined for each MOF by 

fitting the proton binding curve extracted from the titration curves by using the SAEIUS 

numerical procedure.43,44 The four solids showed different titration curves and changes in the 

distribution of acid centers for different pKa values (Figures 7 and S36-S39). All of them show 

a predominant peak centered at pKa0 ≈ 3.1, that can be attributed to the protonation of all the 

oxo, hydroxo axial groups at very low pH. Noticeable differences can be observed at higher 

pKa values, that can be linked to variations in the metal and capping linkers. MIL-100(Ti) shows 

an almost flat pKa distribution above 4.0, consistent with a highly acidic environment. In turn, 

MIL-100(Fe) and MUV-101(Fe) showed a more basic character with a more marked and 

narrower pKa1 contribution with an average pKa1 centered around 7.9, that we ascribe to the 

loss of Fe(III)-OH protons. The titration curve of MUV-101(Co) is more complex due to the 

presence of Co-H2O species in the cluster. Compared to Ti(IV) and Fe(III), Co(II) is a weaker 

Lewis acid but axial H2O molecules can easily loose a proton to render Co-OH–. This results 

in two contribution at pKa1 = 5.78 (Co-OH2) and 9.54 (Co-OH–). Considering pKa1 as the 

dominant acid-base equilibria at the reaction conditions (non-buffered water), the higher 

basicity of MUV-101(Fe) combined with more favourable adsorption of DIFP is consistent with 

the proposed origin for its catalytic activity.  

Figure 7 - Effect of the heteroatom over the acidity of the 
frameworks. Density of acid centers and pKa distribution 

obtained by fitting the proton binding curve extracted from the 

titration curves in water. From top to bottom: MIL-100(Ti), MIL-
100(Fe), MUV-101(Fe) and MUV-101(Co). 
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Concluding remarks. The combination of Ti(IV) with other transition metals can be an 

efficient tool to produce materials with tunable function provided good control of the distribution 

of the metals across the framework. This route can combine the advantageous properties of 

the frameworks produced from this naturally abundant metal, excellent chemical stability, low 

toxicity or photoactivity, with synergetic cooperation for improved catalytic performance. We 

have illustrated this concept for a new family of titanium heterometallic frameworks MUV-

101(Mg, Fe, Co and Ni). Compared to other homo- and heterometallic MOFs, MUV-101(Fe) is 

very efficient in degrading DIFP in aqueous medium and non-buffered conditions. The activity 

of the pristine material does not rely on pre-conditioning with basic buffers or metal-alkoxides, 

thus simplifying its potential integration in protective clothing or gas masks.  

We use an integrative experimental/computational approach to clarify the origin of the 

distinctive catalytic performance that arises from this specific combination of metals and is not 

accessible to the isostructural homometallic analogues. Our simulations suggest that the 

activity of MUV-101(Fe) is due to synergetic cooperation of Ti(IV) Lewis acid and Fe(III)-OH 

Brönsted base sites for a cooperative mechanism that mimics bimetallic PAP enzymes. To the 

best of our knowledge this is the first example of a dual metal transition state in heterometallic 

MOFs that enables clear understanding of the individual roles played by the metals combined 

and their mutual cooperation. We are confident our results represent an excellent platform to 

guide the design of other heterometallic frameworks and span the increasing interest in this 

family of MOFs45,46 to a broad scope of cascade or tandem reactions in which synergetic 

catalysis might yield unprecedented boosts in performance. 
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