11 research outputs found

    The UV, Optical, and IR Properties of SDSS Sources Detected by GALEX

    Full text link
    We discuss the UV, optical, and IR properties of the SDSS sources detected by GALEX as part of its All-sky Imaging Survey Early Release Observations. Virtually all of the GALEX sources in the overlap region are detected by SDSS. GALEX sources represent ~2.5% of all SDSS sources within these fields and about half are optically unresolved. Most unresolved GALEX/SDSS sources are bright blue turn-off thick disk stars and are typically detected only in the GALEX near-UV band. The remaining unresolved sources include low-redshift quasars, white dwarfs, and white dwarf/M dwarf pairs, and these dominate the optically unresolved sources detected in both GALEX bands. Almost all the resolved SDSS sources detected by GALEX are fainter than the SDSS 'main' spectroscopic limit. These sources have colors consistent with those of blue (spiral) galaxies (u-r<2.2), and most are detected in both GALEX bands. Measurements of their UV colors allow much more accurate and robust estimates of star-formation history than are possible using only SDSS data. Indeed, galaxies with the most recent (<20 Myr) star formation can be robustly selected from the GALEX data by requiring that they be brighter in the far-UV than in the near-UV band. However, older starburst galaxies have UV colors similar to AGN, and thus cannot be selected unambiguously on the basis of GALEX fluxes alone. With the aid of 2MASS data, we construct and discuss median 10 band UV-optical-IR spectral energy distributions for turn-off stars, hot white dwarfs, low-redshift quasars, and spiral and elliptical galaxies. We point out the high degree of correlation between the UV color and the contribution of the UV flux to the UV-optical-IR flux of galaxies detected by GALEX.Comment: 35 pages, 11 figures, 3 tables; to appear in the AJ. PS with better figures available from http://www.astro.washington.edu/agueros/pub

    The census of nuclear activity of late-type galaxies in the Virgo cluster

    Full text link
    The first spectroscopic census of AGNs associated to late-type galaxies in the Virgo cluster is carried on by observing 213 out of a complete set of 237 galaxies more massive than M_dyn>10^{8.5} solar masses. Among them, 77 are classified as AGNs (including 21 transition objects, 47 LINERs and 9 Seyferts), and comprize 32% of the late-type galaxies in Virgo. Due to spectroscopic incompleteness at most 21 AGNs are missed in the survey, so that the fraction would increase up to 41%. Using corollary Near-IR observations, that enable us to estimate galaxies dynamical masses, it is found that AGNs are hosted exclusively in massive galaxies, i.e. M_dyn\gsim 10^{10} solar masses. Their frequency increases steeply with the dynamical mass from zero at M_dyn\approx10^{9.5} solar masses to virtually 1 at M_dyn>10^{11.5} solar masses. These frequencies are consistent with the ones of low luminosity AGNs found in the general field by the SDSS. Massive galaxies that harbor AGNs commonly show conspicuous r-band star-like nuclear enhancements. Conversely they often, but not necessarily contain massive bulges. Few well known AGNs (e.g. M61, M100, NGC4535) are found in massive Sc galaxies with little or no bulge. The AGN fraction seems to be only marginally sensitive to galaxy environment. We infer the black hole masses using the known scaling relations of quiescent black holes. No black holes lighter than āˆ¼106\sim 10^6 \msol are found active in our sample.Comment: The paper contains 13 figures and 5 tables; accepted for publication in MNRA

    Panchromatic Properties of 99,000 Galaxies Detected by SDSS, and (some by) ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS Surveys

    Get PDF
    We discuss the panchromatic properties of 99,088 galaxies selected from the SDSS Data Release 1 spectroscopic sample (a flux-limited sample for 1360 deg^2). These galaxies are positionally matched to sources detected by ROSAT, GALEX, 2MASS, IRAS, GB6, FIRST, NVSS and WENSS. We find strong correlations between the detection fraction at other wavelengths and optical properties such as flux, colors, and emission-line strengths. Using GALEX, SDSS, and 2MASS data, we construct the UV-IR broad-band spectral energy distributions for various types of galaxies, and find that they form a nearly one-parameter family. For example, based on SDSS u- and r-band data, supplemented with redshift, the K-band 2MASS magnitudes can be "predicted" with an rms scatter of only 0.2 mag. When a dust content estimate determined from SDSS data by Kauffmann et al. (2003) is also utilized, this scatter decreases to 0.1 mag. We demonstrate that this dust content is indeed higher for galaxies detected by IRAS and that it can be used to "predict" measured IRAS 60 micron flux density within a factor of two using only SDSS data. We also show that the position of a galaxy in the emission-line-based Baldwin-Phillips-Terlevich diagram is correlated with the optical light concentration index and u-r color determined from the SDSS broad-band imaging data, and discuss changes in the morphology of this diagram induced by requiring detections at other wavelengths. We study the IR-radio correlation and find evidence that its slope may be different for AGN and star-forming galaxies and related to the H_alpha/H_beta line strength ratio.Comment: Accepted for publication in MNRAS; 25 pages, 32 color figure

    The star-formation history of K-selected galaxies

    Full text link
    We have studied the uJy radio properties of K-selected galaxies detected in the Ultra-Deep Survey portion of UKIDSS using 610- and 1,400-MHz images from the VLA and GMRT. These deep radio mosaics, combined with the largest and deepest K image currently available, allow high-S/N detections of many K-selected sub-populations, including sBzK and pBzK star-forming and passive galaxies. We find a strong correlation between the radio and K fluxes and a linear relationship between SFR and K luminosity. We find no evidence, from either radio spectral indices or a comparison with submm-derived SFRs, that the full sample is strongly contaminated by AGN. The sBzK and pBzK galaxies have similar levels of radio flux, SFR and specific SFR (SSFR) at z < 1.4, suggesting there is strong contamination of the pBzK sample by star-forming galaxies. At z > 1.4, pBzK galaxies become difficult to detect in the radio stack, though the implied SFRs are still much higher than expected for passively evolving galaxies. Their radio emission may come from low-luminosity AGN. EROs straddle the passive and star-forming regions of the BzK diagram and also straddle the two groups in terms of their radio properties. K-bright ERO samples are dominated by passive galaxies and faint ERO samples contain more star-forming galaxies. The star-formation history (SFH) from stacking all K sources in the UDS agrees well with that derived for other wavebands and other radio surveys, at least out to z ~ 2. The radio-derived SFH then appears to fall more steeply than that measured at other wavelengths. The SSFR for K-selected sources rises strongly with redshift at all stellar masses, and shows a weak dependence on stellar mass. High- and low-mass galaxies show a similar decline in SSFR since z ~ 2 (abridged).Comment: Published in MNRAS, 20 pages, colou

    The ASTRODEEP Frontier Fields catalogues. I. Multiwavelength photometry of Abell-2744 and MACS-J0416

    Get PDF
    Context. The Frontier Fields survey is a pioneering observational program aimed at collecting photometric data, both from space (Hubble Space Telescope and Spitzer Space Telescope) and from ground-based facilities (VLT Hawk-I), for six deep fields pointing at clusters of galaxies and six nearby deep parallel fields, in a wide range of passbands. The analysis of these data is a natural outcome of the Astrodee
    corecore