194 research outputs found

    Gal4 turnover and transcription activation

    Get PDF
    Growing evidence supports the notion that proteasome-mediated destruction of transcriptional activators can be intimately coupled to their function. Recently, Nalley et al. challenged this view by reporting that the prototypical yeast activator Gal4 does not dynamically associate with chromatin, but rather 'locks in' to stable promoter complexes that are resistant to competition. Here we present evidence that the assay used to reach this conclusion is unsuitable, and that promoter-bound, active Gal4 is indeed susceptible to competition in vivo. Our data challenge the key evidence that Nalley et al. used to reach their conclusion, and indicate that Gal4 functions in vivo within the context of dynamic promoter complexes

    Activation of RHOA–VAV1 signaling in angioimmunoblastic T-cell lymphoma

    Get PDF
    Somatic G17V RHOA mutations were found in 50–70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA: VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR) signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further identified VAV1 mutations and a new translocation, VAV1–STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%), whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was also demonstrated in VAV1–STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and the associating TCR signaling by both G17V RHOA and VAV1–STAP2 expression. Phospho-VAV1 staining was demonstrated in the clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that the G17V RHOA–VAV1 axis may provide a new therapeutic target in AITL

    MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice

    Get PDF
    The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells

    Regulation of BMAL1 Protein Stability and Circadian Function by GSK3β-Mediated Phosphorylation

    Get PDF
    Circadian rhythms govern a large array of physiological and metabolic functions. To achieve plasticity in circadian regulation, proteins constituting the molecular clock machinery undergo various post-translational modifications (PTMs), which influence their activity and intracellular localization. The core clock protein BMAL1 undergoes several PTMs. Here we report that the Akt-GSK3beta signaling pathway regulates BMAL1 protein stability and activity.GSK3beta phosphorylates BMAL1 specifically on Ser 17 and Thr 21 and primes it for ubiquitylation. In the absence of GSK3beta-mediated phosphorylation, BMAL1 becomes stabilized and BMAL1 dependent circadian gene expression is dampened. Dopamine D2 receptor mediated signaling, known to control the Akt-GSK3beta pathway, influences BMAL1 stability and in vivo circadian gene expression in striatal neurons.These findings uncover a previously unknown mechanism of circadian clock control. The GSK3beta kinase phosphorylates BMAL1, an event that controls the stability of the protein and the amplitude of circadian oscillation. BMAL1 phosphorylation appears to be an important regulatory step in maintaining the robustness of the circadian clock

    A new era for space life science: international standards for space omics processing

    Get PDF
    10 p.-2 fig.Space agencies have announced plans for human missions to the Moon to prepare for Mars. However, the space environment presents stressors that include radiation, microgravity, and isolation. Understanding how these factors affect biology is crucial for safe and effective crewed space exploration. There is a need to develop countermeasures, to adapt plants and microbes for nutrient sources and bioregenerative life support, and to limit pathogen infection. Scientists across the world are conducting space omics experiments on model organisms and, more recently, on humans. Optimal extraction of actionable scientific discoveries from these precious datasets will only occur at the collective level with improved standardization. To address this shortcoming, we established ISSOP (International Standards for Space Omics Processing), an international consortium of scientists who aim to enhance standard guidelines between space biologists at a global level. Here we introduce our consortium and share past lessons learned and future challenges related to spaceflight omics.European (D.B., H.C., N.J.S., R.H., and S. Giacomello) contribution is supported by ESA Topical Team “Space Omics: Towards an integrated ESA/NASA –omics database for spaceflight and ground facilities experiments” grant 4000131202/20/NL/PG/pt to R.H. S. Giacomello is supported by Formas grant 2017-01066_3. H.C. is supported by the Horizon Centre for Doctoral Training at the University of Nottingham (UKRI grant no. EP/S023305/1) and by the NASA GeneLab Animal Analysis Working Group. N.J.S. is supported by the National Aeronautics and Space Administration (NNX15AL16G). NASA GeneLab members (J.M.G., S.V.C., S.S.R., L.D., S. Gebre) are supported by the NASA Space Biology program within the NASA Science Mission Directorate's (SMD) Biological and Physical Sciences (BPS) Division. R.B. and S. Gilroy are supported by NASA (80NSSC19K0132). L.R. and M.M. represent the Omics Subgroup of Japan Society for the Promotion of Science (JSPS) KAKENHI funding group Living in Space and are supported by JP15K21745, JP15H05940, and JP20H03234. L.R. is supported by JSPS postdoctoral fellowship P20382. D.T. is supported by the Department of Biomedical and Health Informatics and The Children’s Hospital of Philadelphia Research Institute. K.F. is supported by the UC San Diego Department of Medicine and National Institutes of Health, grant UL1TR001442 of CTSA (Clinical and Translational Science Awards). C.E.M. is funded from the WorldQuant Foundation, The Pershing Square Sohn Cancer Research Alliance, and the National Institutes of Health (R01MH117406).Peer reviewe

    Routine omics collection is a golden opportunity for European human research in space and analog environments

    Get PDF
    Widespread generation and analysis of omics data have revolutionized molecular medicine on Earth, yet its power to yield new mechanistic insights and improve occupational health during spaceflight is still to be fully realized in humans. Nevertheless, rapid technological advancements and ever-regular spaceflight programs mean that longitudinal, standardized, and cost-effective collection of human space omics data are firmly within reach. Here, we consider the practicality and scientific return of different sampling methods and omic types in the context of human spaceflight. We also appraise ethical and legal considerations pertinent to omics data derived from European astronauts and spaceflight participants (SFPs). Ultimately, we propose that a routine omics collection program in spaceflight and analog environments presents a golden opportunity. Unlocking this bright future of artificial intelligence (AI)-driven analyses and personalized medicine approaches will require further investigation into best practices, including policy design and standardization of omics data, metadata, and sampling methods

    A review of the renal system and diurnal variations of renal activity in livestock

    Get PDF
    Kidneys are the main organs regulating water-electrolyte homeostasis in the body. They are responsible for maintaining the total volume of water and its distribution in particular water spaces, for electrolyte composition of systemic fluids and also for maintaining acid-base balance. These functions are performed by the plasma filtration process in renal glomeruli and the processes of active absorption and secretion in renal tubules, all adjusted to an 'activity-rest' rhythm. These diurnal changes are influenced by a 24-hour cycle of activity of hormones engaged in the regulation of renal activity. Studies on spontaneous rhythms of renal activity have been carried out mainly on humans and laboratory animals, but few studies have been carried out on livestock animals. Moreover, those results cover only some aspects of renal physiology. This review gives an overview of current knowledge concerning renal function and diurnal variations of some renal activity parameters in livestock, providing greater understanding of general chronobiological processes in mammals. Detailed knowledge of these rhythms is useful for clinical, practical and pharmacological purposes, as well as studies on their physical performance
    corecore