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Activation of RHOA–VAV1 signaling in angioimmunoblastic
T-cell lymphoma
M Fujisawa1,17, M Sakata-Yanagimoto1,2,3,17, S Nishizawa1, D Komori1, P Gershon4, M Kiryu1, S Tanzima1, K Fukumoto1, T Enami1,
M Muratani5, K Yoshida6, S Ogawa6, K Matsue7, N Nakamura8, K Takeuchi9,10, K Izutsu11,12, K Fujimoto13, T Teshima13, H Miyoshi14,
P Gaulard15, K Ohshima14 and S Chiba1,2,3,16

Somatic G17V RHOA mutations were found in 50–70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP
binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA:
VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA
to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR)
signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further
identified VAV1 mutations and a new translocation, VAV1–STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%),
whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was
also demonstrated in VAV1–STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and
the associating TCR signaling by both G17V RHOA and VAV1–STAP2 expression. Phospho-VAV1 staining was demonstrated in the
clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that
the G17V RHOA–VAV1 axis may provide a new therapeutic target in AITL.

Leukemia (2018) 32, 694–702; doi:10.1038/leu.2017.273

INTRODUCTION
Angioimmunoblastic T-cell lymphoma (AITL) is a subtype of
peripheral T-cell lymphoma.1 AITL patients display generalized
lymphadenopathy and immune system-mediated manifestations
including high fever, skin rash, polyarthritis, hemolytic anemia and
hypergammaglobulinemia.2 We and others previously conducted
gene mutational profiling of AITL samples and observed RHOA
mutations converting glycine to valine at amino acid 17 (the G17V
RHOA mutation) in up to 70% of AITL.3–5 Genes encoding the
epigenetic regulators TET2, DNMT3A and IDH2 are also frequently
mutated in AITL.3,4,6–10

RHOA is a small GTPase that cycles between guanosine
diphosphate (GDP)-bound inactive and guanosine-triphosphate
(GTP)-bound active forms. Guanine nucleotide exchange factors
(GEFs) activate RHOA by replacing GDP with GTP. Physiologically,
RHOA mediates migration and polarity of T cells.11,12 RHOA also
functions in thymocyte development13,14 and activation of pre-T-
cell receptor (pre-TCR) signaling in thymocytes.13,15 Glycine at
RHOA residue 17 is located at a critical position for GTP binding.
G17V RHOA protein is considered to be a loss-of-function mutant,
as G17V RHOA does not bind Rhotekin, a molecule with high

affinity for the GTP-bound form.3–5 Nonetheless, the impact of
G17V RHOA expression on AITL remains unclear.
The VAV1 protein mediates a signaling cascade triggered by the

TCR engagement partly through GEF activity,16 whereas GEF-
independent VAV1 functions are also reported.17,18 In the latter,
VAV1 functions as an adaptor in a protein complex that promotes
phosphorylation of phospholipase C-γ1 (PLCγ1).18,19

PLCγ1 phosphorylation induces its own enzymatic activity to
upregulate the second messengers diacylglycerol and inositol
1,4,5-triphosphate, in turn promoting calcium–calmodulin signal-
ing and enhancing nuclear factor of activated T cells (NFAT)
transcription.20 VAV1 also functions in extracellular signal-
regulated kinase, c-Jun N-terminal kinase and nuclear factor-κB
pathways,21 and its activation is tightly regulated by multilayered
autoinhibition by interaction of its Dbl-homology (DH) domain
with both acidic (167–178)22 and C-terminal Src homology 2
(SH2)/SH3 domains. TCR engagement initially triggers the
phosphorylation of Tyr142 and Tyr160 of VAV1 protein, destabiliz-
ing modulatory contacts and facilitating recruitment of the Src
kinases LCK and FYN by providing a docking site for their SH2
domains. Thereafter, VAV1 Tyr174 is phosphorylated,23 relieving
core inhibitory interactions with the acidic and DH domains,
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resulting in the activation of downstream effectors. Conversion of
Tyr174 to either Phe17 or Asp24 or physiologic phosphorylation of
the wild-type Tyr174 residue reportedly activates VAV1 signaling.
In addition, deletion of the VAV1 C terminus enhances its
signaling.25

Here we used mass spectrometry and immunoprecipitation to
show that the G17V RHOA protein specifically binds to VAV1
protein. Upon TCR stimulation, VAV1 binding to G17V RHOA
accelerated VAV1 phosphorylation and the eventual downstream
signaling cascade.

MATERIALS AND METHODS
Patients and samples
Samples were obtained from patients with approval of local ethics
committees in all participating institutes. Informed consent was obtained
from all living subjects.

Cells
Jurkat cells inducibly expressing the wild-type (WT) and G17V RHOA
mutant complementary DNA (cDNA) and mock-transduced cells have been
previously described.3 We newly established VAV1–STAP2-expressing
Jurkat cells with a method similar to the previous one.3 SU9T01 cells
inducibly expressing WT or G17V RHOA cDNA and mock-transduced cells
were also established previously.
Jurkat cells and SU9T01 cells were cultured at 37 °C in RPMI-1640

Medium (Sigma-Aldrich, St Louis, MO, USA) supplemented with 10% fetal
calf serum and 1% penicillin streptomycin. The 293T cells were cultured at
37 °C in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich) supplemen-
ted with 10% fetal calf serum and 1% penicillin streptomycin.

Figure 1. VAV1 activation by G17V RHOA in Jurkat cells. Jurkatmock,
JurkatWTRHOA and JurkatG17V cells were stimulated for 5 or 30 min
with or without anti-CD3 antibody, followed by anti-mouse IgG
antibody. Immunoblots of lysates were performed with antibodies
to VAV1, phospho VAV1 (Tyr174), PLCγ1 and phospho PLCγ1. β-Actin
served as loading control. p-PLCγ1, phospho PLCγ1; p-VAV1,
phospho VAV1.

Figure 2. Binding of SLP 76 and phosphorylated PLCγ1 as well as VAV1 and phospho VAV1 to G17V RHOA in Jurkat cells. Jurkatmock,
JurkatWTRHOA and JurkatG17V cells were stimulated for 5 min with or without anti-CD3 antibody, followed by anti-mouse IgG antibody. Protein
was immunoprecipitated from lysates using anti-Flag antibody and then immunoblotted with antibodies to Flag (RHOA), VAV1, phospho VAV1
(Tyr174), PLCγ1, phospho PLCγ1, and SLP76. β-Actin served as loading control. Asterisk (*) indicates G17V RHOA mutant. p-PLCγ1, phospho
PLCγ1; p-VAV1, phospho VAV1.
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Other experimental methods
DNA extractions, targeted sequencing of RHOA, VAV1, PLCg1, CD28, FYN
and LCK genes, antibodies, inhibitors, mRNA sequencing, plasmids, in vitro
TCR stimulation, immunoprecipitation, mass spectrometry, NFAT reporter
assay, interleukin-2 (IL-2) expression assay and immunohistochemistry are
described in Supplementary Information.

RESULTS
Identification of G17V RHOA-specific binding proteins in Jurkat
cells
To identify specific binding partners of G17V RHOA, we performed
immunoprecipitation analysis in Jurkat cells overexpressing Flag-
tagged WT RHOA (JurkatWTRHOA) or the G17V RHOA mutant
(JurkatG17V). Specifically, we used ANTI-FLAG Magnetic beads in
either line, with or without TCR stimulation (Supplementary
Figure 1). By targeted pull-down followed by mass spectrometry,
we identified G17V RHOA-specific binding proteins: 44 proteins
were identified specifically using G17V bait, both with and without
TCR stimulation, 36 specifically without stimulation and 71
specifically with stimulation (Supplementary Table 1, rows 54–
56). The corresponding database search results for the 44-protein
subset showed the highest Mascot scores to be attributable to
VAV family proteins, namely VAV1 and VAV3 (Supplementary
Table 2, rows 77 and 78). Here, Mascot protein score is a surrogate
for protein abundance. Notably, PLCγ1, an essential component of
the TCR pathway, was detected among the G17V RHOA-specific
binding proteins only with TCR stimulation (Supplementary Table 2,
row 105).
Both tumor-associated G17V3–5 and engineered G17A RHOA

mutants26 lose nucleotide binding capacity, and both have been

shown to tightly bind various GEFs. Notably, in COS7 cells the
G17A RHOA mutant interacts with active VAV1 mutants that lack
the inhibitory N-terminal regions (Δ1–186) or C-terminal SH3
domains (Δ835–845).25 Here, we performed western blot and
immunoprecipitation analysis using JurkatWTRHOA and JurkatG17V

to validate mass spectrometry results reported above
(Supplementary Figure 2). VAV1 was specifically coprecipitated
with the G17V RHOA mutant but not with wild-type RHOA in the
presence or absence of TCR stimulation, but binding efficiency
was markedly augmented by TCR stimulation (Supplementary
Figure 2). The result was consistent with the elevated Mascot score
by mass spectrometry (Supplementary Table 2, row 78). In
contrast, in similar assays we did not observe VAV3 binding to
the G17V RHOA mutant (data not shown).
Various deletion mutants lacking the functional domains of

VAV1 to determine the binding site for the G17V RHOA were
made (Supplementary Figure 7a). A deletion mutant lacking the
DH domain did not bind to the G17V RHOA, whereas other
mutants as well as wild-type VAV1 did (Supplementary Figure 7b).
These observations suggest that the DH domain is essential for
binding to the G17V RHOA.

Interaction with G17V RHOA activates VAV1, enhancing its adaptor
function
As described, VAV1 phosphorylation at Tyr174 is critical for its
activation following TCR stimulation. Remarkably, we detected
VAV1 Tyr174 phosphorylation in JurkatG17V cells, even in an
unstimulated state, although at low levels, whereas Tyr174
phosphorylation was not seen in unstimulated JurkatWTRHOA or
mock-transduced cells (Figure 1 and Supplementary Figure 3). TCR
stimulation enhanced VAV1 phosphorylation in both JurkatWTRHOA

Figure 3. Effect of Src inhibitors on VAV1 activation by G17V RHOA following TCR stimulation. Jurkatmock, JurkatWTRHOA and JurkatG17V cells
were stimulated with or without anti-CD3 antibody, followed by anti-mouse IgG antibody after (a) PP2 or (b) dasatinib treatment at indicated
concentrations. Lysates were fractionated and immunoblotted with antibodies to VAV1, phospho VAV1 (Tyr174), PLCγ1 and phospho PLCγ1.
β-Actin served as loading control. p-PLCγ1, phospho PLCγ1; p-VAV1, phospho VAV1.
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and mock cells, but that effect was more pronounced in JurkatG17V

cells (Figure 1 and Supplementary Figure 3). VAV1 mediates PLCγ1
phosphorylation through facilitating assembly of a PLCγ1–SLP76–
LAT complex.19 As anticipated, PLCγ1 phosphorylation was more
striking in JurkatG17V than in mock-transduced or JurkatWTRHOA

cells upon TCR stimulation (Figure 1 and Supplementary Figure 3).

SLP76, an adaptor molecule, and phosphorylated PLCγ1 as well as
total and phosphorylated VAV1 were also co-immunoprecipitated
with G17V but not with wild-type RHOA (Figure 2). These
observations suggest that G17V RHOA–VAV1 interaction
enhanced the adaptor function of VAV1 to facilitate formation of
a TCR signaling complex.

Figure 4. Identification of VAV1 mutations in human AITL and PTCL-NOS. (a) Schematic diagram of VAV1–STAP2 fusion genes. (b) Structure of
VAV1 mutations and VAV1 functional domains. (c) Confirmation of VAV1 mutations by Sanger sequencing. Arrows indicate where mutations
occur. (d) Mutation profile of RHOA and VAV1 mutations. Three slushed samples had RHOA mutations other than typical c.G50T mutations. In
PTCL 216, c.50_51GA4TC mutations resulted in p.Gly17Val alternation; in PTCL 223, c.50G4A mutation resulted in p.Gly17Glu alternation; and
in PTCL 198, c.49_50GG4TT mutations resulted in p.Gly17Leu alternation. *, tatgeted sequencing for VAV1 was not performed.
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Src kinases reportedly mediate TCR signaling-dependent VAV1
phosphorylation. PP2, a pan-Src inhibitor, dose-dependently
inhibited VAV1 phosphorylation (Figure 3a). In addition, some
Src kinases including LCK and FYN are known targets of dasatinib,
a drug used to treat BCR-ABL-positive leukemias. Thus, we asked
whether dasatinib would inhibit VAV1 phosphorylation. As
expected, dasatinib dose-dependently inhibited VAV1 phosphor-
ylation, almost completely at 10 nM, in both JurkatG7V and JurkatWT

cells (Figure 3b). PLCγ1 phosphorylation was also inhibited by PP2
and more efficiently by dasatinib (Figures 3a and b).
We also observed enhanced phosphorylation of VAV1 and

PLCγ1 following induction of G17V RHOA expression in
SU9T01 cells, an adult T-cell leukemia/lymphoma (ATLL) line,
whereas induction of WT RHOA had no effect (Supplementary
Figure 4). Furthermore, transient transduction of 293T cells with
VAV1 cDNA plus either WT or G17V RHOA revealed greater VAV1
phosphorylation in the presence of G17V RHOA (Supplementary
Figure 5). VAV1 and G17V RHOA also co-immunoprecipitated in
293T cells (Supplementary Figure 6). These data overall suggest
that VAV1 activation in the presence of the G17V RHOA mutant
occurs in a variety of cell types.

Activating VAV1 mutations occur in human AITL and PTCL-NOS
VAV1 translocations and missense/deletion mutations have been
identified in T-cell lymphomas.27–29 Here, RNA sequencing of 9
peripheral T-cell lymphoma (PTCL) samples (6 AITL and 3 PTCL-not
otherwise specified (NOS)) identified a VAV1–STAP2 fusion gene in
an AITL sample lacking the RHOA mutation (PTCL35, Figures 4a–c
and Supplementary Tables 3 and 4). Targeted deep sequencing of
VAV1 in 126 PTCL samples (69 AITL and 57 PTCL-NOS) identified
two in-frame deletion mutations in an acidic region (c.
C518_529del, p. 173_177del in PTCL47; c.C494_520del,
p.165_174del in PTCL56) and two in-flame deletion mutations in
C-terminal site of an SH2 domain (c.2333_2352del, p.778_786del29

in PTCL181; c.2303_2329del, p.768_777del in PTCL213) in four
AITL samples and two missense mutations in the zinc-finger
domain and the SH3-SH2-SH3 module, respectively (c.G1668C, p.
Glu556Asp in PTCL204; c.C1844T, p.Pro615Leu in PTCL67), in one
PTCL-NOS and one AITL sample (Figures 4b and c and
Supplementary Table 5). In total, seven VAV1 alterations including
mutations of varying types and a fusion were found in 85 RHOA
mutation-negative samples (8.2%), whereas none of the 41 RHOA
mutation-positive PTCL samples exhibited VAV1 mutations
(Figure 4d). In addition, we examined mutations in PLCG1, CD28,
FYN and LCK for 49 samples. Six PLCG1 mutations, two CD28
mutations and one FYN mutation were detected, whereas LCK
mutations were not (Supplementary Figure 8). Although the
sample number was too small to elicit proper conclusion, both
RHOA and VAV1 mutations were not exclusive with these
mutations.
Analysis of Jurkat cells inducibly overexpressing VAV1–STAP2

(JurkatVAV1–STAP2) showed robust phosphorylation of VAV1–STAP2
at Tyr174, even in TCR-unstimulated conditions (Figure 5a and
Supplementary Figure 9). VAV1 phosphorylation was faintly
detected in cells overexpressing WT VAV1 (JurkatWTVAV1) but not
in mock-transduced (Jurkatmock) cells when the TCR was
unstimulated (Figure 5a and Supplementary Figure 9). TCR
stimulation enhanced phosphorylation of both VAV1–STAP2 and
WT VAV1, but VAV1–STAP2 was more highly phosphorylated than
WT VAV1 (Figure 5a and Supplementary Figure 9). Unlike G17V
RHOA expression, VAV1–STAP2 expression enhanced PLCγ1
phosphorylation, even without TCR stimulation (Figure 5a). These
observations suggest that VAV1–STAP2 may autonomously
activate TCR signaling without antigen stimulation. PLCγ1
phosphorylation was more striking in JurkatVAV1–STAP2 than in
mock-transduced or JurkatWTVAV1 cells upon TCR stimulation.
Phosphorylation of VAV1–STAP2 and WT VAV1 was dose-

dependently inhibited by either PP2 or dasatinib treatment
(Figures 5b and c).

Enhanced NFAT activity upon TCR stimulation by G17V RHOA and
VAV1 mutants
NFAT transcription factors are essential for T-cell activation and
differentiation, and TCR stimulation activates NFATs through Ca2+

mobilization.30 VAV1 mediates Ca2+ mobilization mainly through
PLCγ1 activation.19

To identify potential function of G17V RHOA in NFAT activity,
we transiently transfected Jurkat cells with a reporter vector
containing an NFAT response element plus WT or G17V RHOA
cDNAs in the presence or absence of TCR stimulation. Expression
of G17V RHOA augmented NFAT activity upon TCR stimulation,
whereas that of the WT construct did not (Figure 6a). Dasatinib
dose-dependently inhibited NFAT activity in Jurkat cells trans-
duced with either WT or G17V RHOA (Figure 6b).
We also assessed NFAT activity in Jurkat cells transiently

transduced with the NFAT response element reporter plus WT
VAV1 or VAV1–STAP2, VAV1 p.173_177del, p.165_174del and p.
Pro615Leu mutant cDNAs with or without TCR stimulation. In
unstimulated conditions, the VAV1–STAP2 construct promoted
induced NFAT activity in Jurkat cells as the previously reported
fusions, VAV1–MYO1F and VAV1–S100A729 did, whereas the other
mutants and WT VAV1 did not (Supplementary Figures 10a and

Figure 5. Effect of Src inhibitors on VAV1–STAP2 activation.
(a–c) Jurkatmock, JurkatWTVAV1 and JurkatVAV1–STAP2 cells were
stimulated with or without anti-CD3 antibody followed by anti-mouse
IgG antibody. Cells were treated with (b) PP2 or (c) dasatinib at indicated
concentrations. Lysates were fractionated and immunoblotted with
antibodies to VAV1, phospho VAV1, and PLCγ1. β-Actin served as
loading control. p-PLCγ1, phospho PLCγ1; p-VAV1, phospho VAV1.
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11). Under TCR stimulation, NFAT activity was enhanced by
transduction of WT VAV1 relative to mock control cells, whereas all
VAV1 mutants had a greater enhancement effect than did WT
VAV1 (Supplementary Figure 10a). Dasatinib treatment abrogated
NFAT activity in Jurkat cells transduced with either WT or mutant
VAV1 (Supplementary Figure 10b).

G17V RHOA and VAV1–STAP2 enhances IL-2 mRNA expression
IL-2 is a pivotal NFAT target gene.30 We observed increased IL-2
mRNA expression following TCR stimulation of Jurkatmock, peaking
at 3 h and decreasing to slightly above basal levels by 6 h
(Figure 6c). Such TCR stimulation-dependent IL-2 expression was
markedly enhanced by G17V RHOA, whereas WT RHOA rather
repressed TCR stimulation-dependent IL-2 mRNA expression
(Figure 6c). Dasatinib almost completely suppressed IL-2 mRNA
induction by TCR stimulation in JurkatG17V cells at doses that
suppressed VAV1 phosphorylation (Figure 6d).
We also examined IL-2 expression in JurkatVAV1–STAP2,

JurkatWTVAV1 and Jurkatmock cells in the presence or absence of
TCR stimulation. IL-2 expression under TCR stimulation was higher
in JurkatVAV1–STAP2 than in JurkatWTVAV1 or Jurkat mock control cells
(Supplementary Figure 12a). IL-2 induction by TCR stimulation in

JurkatVAV1–STAP2 was dose-dependently inhibited by dasatinib
treatment (Supplementary Figure 12b).

Enrichment of cytokine- or chemokine-related signaling by G17V
RHOA expression
We next performed mRNA sequencing analysis to examine
effects of G17V RHOA on gene expression using RNA prepared
from Jurkat cells inducibly expressing WT RHOA or G17V RHOA,
or mock transduced, after CD3 and CD28 stimulation. Gene
Set Enrichment Analysis demonstrated that cytokine–cytokine
receptor interactions, chemokine signaling and TCR signaling
pathways were significantly enriched at a false discovery rate
q-value of o0.25 for cells expressing WT RHOA or for mock-
transduced cells (Figure 7, Supplementary Figure 13 and
Supplementary Table 6).

AITL samples harboring RHOA or VAV1 mutations show enhanced
VAV1 Tyr174 phosphorylation
To determine whether VAV1 activation occurs in AITL tumor cells,
we stained 26 human lymphoma samples using an antibody to
VAV1 phosphorylated at Tyr174 (p-VAV1). In 12 AITL samples, all 8
samples with RHOA or VAV1 mutations were p-VAV1-positive,

Figure 6. Effect of G17V RHOA on NFAT activity or IL-2 expression in Jurkat cells. (a, b) Jurkat cells were transiently transfected with a reporter
containing an NFAT response element (NFAT-RE) together with WT or G17V RHOA mutant cDNAs in the presence of absence of Dynabeads
Human T-activator CD3/CD28. (a) NFAT activity in indicated samples. (b) Effect of dasatinib on NFAT activity. The mean± s.d. from triplicate
samples is shown. (c, d) Jurkatmock, JurkatWTRHOA and JurkatG17V cells were stimulated in the presence or absence of Dynabeads Human
T-activator CD3/CD28. (c) IL-2 gene expression based on real-time PCR. (d) Effect of dasatinib treatment on IL-2 expression in JurkatG17V cells.
Cells were harvested at 3 h. The mean± s.d. from triplicate samples is shown.
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whereas 4 samples that did not exhibit mutations in either gene
were unstained (Po0.05) (Supplementary Table 7). Nine samples
from patients with hematologic malignancies other than PTCL
were negative for anti-p-VAV1 antibody. To determine the
identities of anti-p-VAV1 antibody-positive cells, we performed
double fluorescence staining in 11 PTCL samples exhibiting RHOA
or VAV1 mutations. The p-VAV1-positive cells costained with
antibody to programmed cell death 1 (PDCD1), a marker of AITL
tumor cells in 9 of 11 PTCL samples with RHOA or VAV1 mutations
(Figure 8 and Supplementary Table 7).

DISCUSSION
In AITL, the G17V RHOA mutation is among the most frequent
gene alterations, whereas VAV1 mutations are seen at much lower
frequencies. All of these alterations if examined activate VAV1
protein through promoting tyrosine phosphorylation and enhance
TCR signaling. The G17V RHOA and VAV1 mutations were mutually
exclusive in our cohort, though VAV1 fusions were examined only
in a part of samples.
Nonetheless, the physiologic functions of RHOA are presumably

abrogated in the G17V mutant, as the protein cannot be
converted to the active GTP-bound form. VAV1 mediates TCR
signaling as both a GEF to activate small GTPases and as an
adaptor to facilitate formation or function of the TCR signaling
complex. The results reported here strongly indicate that G17V
RHOA modulates VAV1 function as an adaptor (Supplementary
Figure 14).
VAV1mutations seen in AITL also enhance TCR signaling. Recent

studies demonstrated that genes encoding members participating
in TCR signaling are frequently mutated in AITL and related T-cell
lymphomas.28 Among genes encoding TCR signaling molecules,
PLCG1 (14.1%),28 CD28 (9.4–11.3%),28,31,32 VAV1 (4.7%),28,29 and FYN

(2.9-3.5%)4,28 are most frequently mutated. ITK,27,33 VAV1(refs. 27,29)

and CD28(ref. 34) loci are also involved in recurrent chromosomal
translocations. This evidence combined with our functional
analysis of G17V RHOA suggest that enhanced TCR signaling
induces development of T-cell neoplasms, comparable to the idea
that enhanced BCR signaling due to mutations is a critical factor in
development of B-cell neoplasms.35,36

In terms of gene expression, AITL tumor cells exhibit profiles
comparable to follicular helper T cells,2 and the transcription
factors NFAT1 and NFAT2 are essential for follicular helper T-cell
development.37 Activation of NFAT by G17V RHOA may promote
AITL tumor cell phenotypes. In addition, deregulated expression of
ICOS, a signaling factor critical for follicular helper T-cell
differentiation,38 reportedly results in development of AITL-like
disease in Roquinsan heterozygous mice.39

Several reports show that cyclosporine A, which blocks TCR
signaling by inhibiting calcineurin,40 is effective to treat some AITL
patients.41,42 Dasatinib, which inhibits the tyrosine kinase ABL in
BCR-ABL-positive chronic myelogenous leukemia and acute
lymphoblastic leukemia,43 also inhibits other cytoplasmic and
receptor tyrosine kinases.44 We found that aberrant VAV1
activation and subsequent signaling by G17V RHOA and VAV1
mutations are efficiently inhibited by dasatinib treatment. It is now
important to conduct clinical studies to evaluate effects of
dasatinib in AITL patients. G17V RHOA and VAV1 mutations were
seen in AITL samples positive for phospho-VAV1 at a statistically
higher frequency. Thus, detection of phospho-VAV1 by immunos-
taining may serve as a surrogate biomarker for dasatinib
sensitivity.
Recent genetic studies identified RHOA mutations in lymphoid

malignancies other than AITL, such as Burkitt’s lymphoma45 and
ATLL,46 as well as in diffuse-type gastric carcinoma, a nonhema-
tologic malignancy.47 These findings suggest that structural

Figure 7. Transcriptome analysis of JurkatG17V and JurkatWTRHOA cells. Gene set enrichment analysis (GSEA) for Jurkat cells inducibly
overexpressing WT or G17V RHOA or mock-transfected cells (n= 2 each). Representative differentially enriched pathways include (a) cytokine–
cytokine receptor interactions, (b) chemokine signaling or (c) TCR signaling and refer to KEGG gene sets (C2) shown.
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alteration of RHOA by mutation is a common mechanism
underlying development of some malignancies. Mutational hot
spots, however, differ among diseases: p.Arg5Gln and p.Tyr42Cys
are most frequent in Burkitt’s lymphoma45 and gastric
carcinomas,47 whereas p.Cys16Arg is most frequent in ATLL.46

Some RHOA mutants upregulate classical RHOA signaling whereas
others downregulate it, even in a single disease.46,48 These
outcomes are complex but possibly understandable if these RHOA
mutants mediate oncogenesis through mechanisms other than
modification of classical RHOA signaling as is shown here in AITL.
VAV1 mutations are found in T-cell malignancies other than AITL,
such as ATLL,49 PTCL-NOS27 and anaplastic large cell lymphoma,27

as well as in nonhematologic cancers such as those of stomach,47

pancreas50 and melanoma.50 Thus, RHOA and VAV1 mutations are
frequent events in several cancers, although downstream
mechanisms of these mutations in malignancies other than AITL
remain to be elucidated.
In summary, our results demonstrate that the G17V RHOA–VAV1

axis is activated in AITL. This finding contributes to our under-
standing of AITL mechanisms and to efforts to develop targeted
therapies.
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