264 research outputs found

    Correlation between Endosonographic and Doppler Ultrasound Features of Portal Hypertension in Patients with Cirrhosis

    Get PDF
    Purpose. Endoscopic ultrasound (EUS) permits the detailed visualization of clinically significant features of portal hypertension; however, it is an invasive procedure that is not widely available. The aim of this cross-sectional study was to determine whether a correlation exists between the features of portal hypertension detected using both Doppler ultrasound and EUS in subjects with liver cirrhosis. Materials and Methods. Analyzed cohort included 42 patients who underwent a detailed Doppler ultrasound focusing on the parameters of blood flow in the portal/splenic vein as well as an endoscopic/EUS procedure that included the assessment of the size and localization of “deep” varices. Results. The size of “deep” oesophageal varices detected with EUS exhibited no correlation with the parameters assessed by Doppler ultrasound. However, the size of the “deep” gastric varices detected using EUS correlated with the time averaged maximum velocity (Tmax as well as Vmin, Vmax) for the portal vein using Doppler ultrasound and exhibited a correlation with the Vmax and Tmax for the splenic vein. No significant correlation was determined between the diameter of the azygous vein and the thickness of the gastric wall when seen on EUS versus the parameters measured with Doppler ultrasound. Conclusion. EUS provides important information regarding the features of portal hypertension, and in the case of “deep” oesophageal varices exhibits a limited correlation with the parameters detected by Doppler ultrasound. Thus, despite its invasiveness, EUS is a method that provides a reliable and unique assessment of the features of portal hypertension in patients with liver cirrhosis

    Epigenetic mechanisms and metabolic reprogramming in fibrogenesis: dual targeting of G9a and DNMT1 for the inhibition of liver fibrosis

    Get PDF
    OBJECTIVE: Hepatic stellate cells (HSC) transdifferentiation into myofibroblasts is central to fibrogenesis. Epigenetic mechanisms, including histone and DNA methylation, play a key role in this process. Concerted action between histone and DNA-mehyltransferases like G9a and DNMT1 is a common theme in gene expression regulation. We aimed to study the efficacy of CM272, a first-in-class dual and reversible G9a/DNMT1 inhibitor, in halting fibrogenesis. DESIGN: G9a and DNMT1 were analysed in cirrhotic human livers, mouse models of liver fibrosis and cultured mouse HSC. G9a and DNMT1 expression was knocked down or inhibited with CM272 in human HSC (hHSC), and transcriptomic responses to transforming growth factor-β1 (TGFβ1) were examined. Glycolytic metabolism and mitochondrial function were analysed with Seahorse-XF technology. Gene expression regulation was analysed by chromatin immunoprecipitation and methylation-specific PCR. Antifibrogenic activity and safety of CM272 were studied in mouse chronic CCl4 administration and bile duct ligation (BDL), and in human precision-cut liver slices (PCLSs) in a new bioreactor technology. RESULTS: G9a and DNMT1 were detected in stromal cells in areas of active fibrosis in human and mouse livers. G9a and DNMT1 expression was induced during mouse HSC activation, and TGFβ1 triggered their chromatin recruitment in hHSC. G9a/DNMT1 knockdown and CM272 inhibited TGFβ1 fibrogenic responses in hHSC. TGFβ1-mediated profibrogenic metabolic reprogramming was abrogated by CM272, which restored gluconeogenic gene expression and mitochondrial function through on-target epigenetic effects. CM272 inhibited fibrogenesis in mice and PCLSs without toxicity. CONCLUSIONS: Dual G9a/DNMT1 inhibition by compounds like CM272 may be a novel therapeutic strategy for treating liver fibrosis

    Fine-tuning of SIRT1 expression is essential to protect the liver from cholestatic liver disease

    Get PDF
    Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRT oe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRT hep–/– ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRT oe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2 –/– ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRT oe mice showed exacerbated parenchymal injury whereas SIRT hep–/– mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRT oe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRT hep–/– hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRT oe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage

    TREM-2 plays a protective role in cholestasis by acting as a negative regulator of inflammation

    Get PDF
    Background & Aims: Inflammation, particularly that mediated by bacterial components translocating from the gut to the liver and binding to toll-like receptors (TLRs), is central to cholestatic liver injury. The triggering receptor expressed on myeloid cells-2 (TREM-2) inhibits TLR-mediated signaling and exerts a protective role in hepatocellular injury and carcinogenesis. This study aims to evaluate the role of TREM-2 in cholestasis.Methods: TREM-2 expression was analyzed in the livers of pa-tients with primary biliary cholangitis (PBC) or primary scle-rosing cholangitis (PSC), and in mouse models of cholestasis. Wild-type (WT) and Trem-2 deficient (Trem-2-/-) mice were subjected to experimental cholestasis and gut sterilization. Pri-mary cultured Kupffer cells were incubated with lipopolysac-charide and/or ursodeoxycholic acid (UDCA) and inflammatory responses were analyzed.Results: TREM-2 expression was upregulated in the livers of patients with PBC or PSC, and in murine models of cholestasis. Compared to WT, the response to bile duct ligation (BDL)-induced obstructive cholestasis or alpha-naphtylisothiocyanate (ANIT)-induced cholestasis was exacerbated in Trem-2-/-mice. This was characterized by enhanced necroptotic cell death, in-flammatory responses and biliary expansion. Antibiotic treat-ment partially abrogated the effects observed in Trem-2-/-mice after BDL. Experimental overexpression of TREM-2 in the liver of WT mice downregulated ANIT-induced IL-33 expression and neutrophil recruitment. UDCA regulated Trem-1 and Trem-2 expression in primary cultured mouse Kupffer cells and damp-ened inflammatory gene transcription via a TREM-2-dependent mechanism.Conclusions: TREM-2 acts as a negative regulator of inflamma-tion during cholestasis, representing a novel potential thera-peutic target.Lay summary: Cholestasis (the reduction or cessation of bile flow) causes liver injury. This injury is exacerbated when gut-derived bacterial components interact with receptors (spe-cifically Toll-like receptors or TLRs) on liver-resident immune cells, promoting inflammation. Herein, we show that the anti-inflammatory receptor TREM-2 dampens TLR-mediated signaling and hence protects against cholestasis-induced liver injury. Thus, TREM-2 could be a potential therapeutic target in cholestasis.Spanish Carlos III Health Institute (ISCIII) [J.M. Banales (FIS PI18/01075, PI21/00922 and Miguel Servet Program CPII19/00008); M.J. Perugorria (FIS PI14/00399, PI17/00022 and PI20/00186); J.J.G. Marin (FIS PI16/00598 and PI19/00819); P.M. Rodrigues (Sara Borrell CD19/00254)] cofinanced by “Fondo Europeo de Desarrollo Regional” (FEDER); “Instituto de Salud Carlos III” [CIBERehd: M.J. Monte, J.J.G. Marin, J.M. Banales, M.J. Perugorria, P. Aspichueta, P.M. Rodrigues and L. Bujanda], Spain; “Diputación Foral de Gipuzkoa” (M.J. Perugorria: DFG18/114), Department of Health of the Basque Country (M.J. Perugorria: 2019111024, 2015111100 and J.M. Banales: 2021111021), “Euskadi RIS3” (J.M. Banales: 2019222054, 2020333010, 2021333003), and Department of Industry of the Basque Country (J.M. Banales: Elkartek: KK-2020/00008); “Junta de Castilla y Leon” (J.J.G. Marin: SA063P17). La Caixa Scientific Foundation (J.M. Banales: HR17-00601). “Fundación Científica de la Asociación Española Contra el Cáncer” (AECC Scientific Foundation, to J.M. Banales and J.J.G. Marin); “Centro Internacional sobre el Envejecimiento” (J.J.G. Marin: OLD-HEPAMARKER, 0348_CIE_6_E); Fundació Marato TV3 (J.J.G. Marin: Ref. 201916-31). O Sharif was funded by the Austrian Science Fund (FWF-P35168). Work in the lab of T. Luedde was funded by the European Research Council (ERC) (Grant Agreement 771083), the German Research Foundation (DFG – LU 1360/3-2 (279874820), LU 1360/4-(1461704932) and SFB-CRC 1382-Project A01) and the German Ministry of Health (BMG – DEEP LIVER 2520DAT111). Contributions of M. Marzioni were funded by the Università Politecnica delle Marche PSA2017_UNIVPM grant. Contributions of DAM were supported by programme grants from CRUK (C18342/A23390) and MRC (MR/K0019494/1 and MR/R023026/1). MJ Perugorria was funded by the Spanish Ministry of Economy and Competitiveness (MINECO: “Ramón y Cajal” Programme RYC-2015-17755), I. Labiano, A. Agirre-Lizaso, P. Olaizola, A. Echebarria and F. González-Romero by the Basque Government (PRE_2016_1_0152, PRE_2018_1_0184, PRE_2016_1_0269 PRE_2020_1_0080, PRE_2018_1_0120, respectively), I. Olaizola by the Ministry of Universities (FPU 19/03327) and A. Esparza-Baquer by the University of the Basque Country (PIF2014/11). The funding sources had no involvement in study design, data collection and analysis, decision to publish, or preparation of the article

    PR3-ANCA:a promising biomarker in primary sclerosing cholangitis (PSC)

    Get PDF
    BACKGROUND AND AIMS:The only recognized biomarker for primary sclerosing cholangitis (PSC) is atypical anti-neutrophil cytoplasmic antibodies (aANCA), which, in addition to having low sensitivity and specificity, is an indirect immunofluorescence (IIF) test lacking the advantages of high throughput and objectivity. Recent reports have shown that antibodies to proteinase-3 (PR3-ANCA) might add diagnostic value in inflammatory bowel disease (IBD), specifically in ulcerative colitis (UC). As PSC is associated with IBD, the objective of this study was to evaluate the frequency and clinical significance of PR3-ANCA in a large cohort of patients. METHODS:A total of 244 PSC and 254 control [autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC), hepatitis C viral infection (HCV), hepatitis B viral infection (HBV), and healthy controls] sera and their clinical correlations were retrospectively analyzed for PR3-ANCA determined by ELISA and a new chemiluminescence immunoassay (CIA). Testing was also performed for aANCA by IIF. RESULTS:When measured by CIA, PR3-ANCA was detected in 38.5% (94/244) of PSC patients compared to 10.6% (27/254) controls (p<0.0001). By ELISA, PR3-ANCA was detected in 23.4% (57/244) of PSC patients compared to 2.7% (6/254) controls (p<0.0001). PR3-ANCA in PSC patients was not associated with the presence or type of underlying IBD, and, in fact, it was more frequent in Crohn's disease (CD) patients with PSC than previously reported in CD alone. PR3-ANCA in PSC measured by CIA correlated with higher liver enzymes. CONCLUSION:PR3-ANCA is detected in a significant proportion of PSC patients compared to other liver diseases including PBC and AIH. PR3-ANCA is associated with higher liver enzyme levels in PSC, and is not solely related to underlying IBD

    MARC1 p.A165T variant is associated with decreased markers of liver injury and enhanced antioxidant capacity in autoimmune hepatitis

    Get PDF
    The clinical picture of autoimmune hepatitis (AIH) varies markedly between patients, potentially due to genetic modifiers. The aim of this study was to evaluate genetic variants previously associated with fatty liver as potential modulators of the AIH phenotype. The study cohort comprised 313 non-transplanted adults with AIH. In all patients, the MARC1 (rs2642438), HSD17B13 (rs72613567), PNPLA3 (rs738409), TM6SF2 (rs58542926), and MBOAT7 (rs641738) variants were genotyped using TaqMan assays. Mitochondrial damage markers in serum were analyzed in relation to the MARC1 variant. Carriers of the protective MARC1 allele had lower ALT and AST (both P < 0.05). In patients treated for AIH for ≥ 6 months, MARC1 correlated with reduced AST, ALP, GGT (all P ≤ 0.01), and lower APRI (P = 0.02). Patients carrying the protective MARC1 genotype had higher total antioxidant activity (P < 0.01) and catalase levels (P = 0.02) in serum. The PNPLA3 risk variant was associated with higher MELD (P = 0.02) in treated patients, whereas MBOAT7 increased the odds for liver cancer (OR = 3.71). None of the variants modulated the risk of death or transplantation. In conclusion, the MARC1 polymorphism has protective effects in AIH. Genotyping of MARC1, PNPLA3, and MBOAT7 polymorphisms might help to stratify patients with AIH

    The Prevalence of Anti-Hexokinase-1 and Anti-Kelch-Like 12 Peptide Antibodies in Patients With Primary Biliary Cholangitis Is Similar in Europe and North America: A Large International, Multi-Center Study

    Get PDF
    Primary biliary cholangitis (PBC), formerly known as primary biliary cirrhosis, is present worldwide. Autoantibodies, in particular anti-mitochondrial antibodies (AMA) detected by indirect immunofluorescence assays or newer solid phase immunoassays can detect most, but not all individuals with PBC. Detection of antibodies to the anti-nuclear antigens sp100 and gp210 can identify additional PBC patients, but some seronegative patients remain, often resulting in delayed diagnosis and treatment. Antibodies to kelch-like 12 (KLHL12) and hexokinase 1 (HK-1) were recently identified as new biomarkers for PBC and notably identify patients who are negative for conventional autoantibodies. To become globally adopted, it is important to validate these new biomarkers in different geographic areas. In the present study we evaluated the prevalence of anti-KLHL12 (measured by a KLHL12-derived peptide referred to as KL-p) and anti-HK-1 antibodies by ELISA at five sites within Europe and North America and demonstrated the presence of these antibodies in patients with PBC in all geographies

    No hypoperfusion is produced in the epicardium during application of myocardial topical negative pressure in a porcine model

    Get PDF
    ABSTRACT: BACKGROUND: Topical negative pressure (TNP), commonly used in wound therapy, has been shown to increase blood flow and stimulate angiogenesis in skeletal muscle. We have previously shown that a myocardial TNP of -50 mmHg significantly increases microvascular blood flow in the myocardium. When TPN is used in wound therapy (on skeletal and subcutaneous tissue) a zone of relative hypoperfusion is seen close to the wound edge. Hypoperfusion induced by TNP is thought to depend on tissue density, distance from the negative pressure source, and the amount negative pressure applied. When applying TNP to the myocardium, a significant, long-standing zone of hypoperfusion could theoretically cause ischemia, and negative effects on the myocardium. The current study was designed to elucidate whether hypoperfusion was produced during myocardial TNP. METHODS: Six pigs underwent median sternotomy. Laser Doppler probes were inserted horizontally into the heart muscle in the LAD area, at depths of approximately, 1-2 mm. The microvascular blood flow was measured before and after the application of a TNP. Analyses were performed before left anterior descending artery (LAD) occlusion (normal myocardium) and after 20 minutes of LAD occlusion (ischemic myocardium). RESULTS: A TNP of -50 mmHg induced a significant increase in microvascular blood flow in normal myocardium (**p = 0.01), while -125 mmHg did not significantly alter the microvascular blood flow. In ischemic myocardium a TNP of -50 mmHg induced a significant increase in microvascular blood flow (*p = 0.04), while -125 mmHg did not significantly alter the microvascular blood flow. CONCLUSION: No hypoperfusion could be observed in the epicardium in neither normal nor ischemic myocardium during myocardial TNP

    Genomic Characterization of Cholangiocarcinoma in Primary Sclerosing Cholangitis Reveals Therapeutic Opportunities

    Get PDF
    Background and Aims Lifetime risk of biliary tract cancer (BTC) in primary sclerosing cholangitis (PSC) may exceed 20%, and BTC is currently the leading cause of death in patients with PSC. To open new avenues for management, we aimed to delineate clinically relevant genomic and pathological features of a large panel of PSC-associated BTC (PSC-BTC). Approach and Results We analyzed formalin-fixed, paraffin-embedded tumor tissue from 186 patients with PSC-BTC from 11 centers in eight countries with all anatomical locations included. We performed tumor DNA sequencing at 42 clinically relevant genetic loci to detect mutations, translocations, and copy number variations, along with histomorphological and immunohistochemical characterization. Regardless of the anatomical localization, PSC-BTC exhibited a uniform molecular and histological characteristic similar to extrahepatic cholangiocarcinoma. We detected a high frequency of genomic alterations typical of extrahepatic cholangiocarcinoma, such asTP53(35.5%),KRAS(28.0%),CDKN2A(14.5%), andSMAD4(11.3%), as well as potentially druggable mutations (e.g.,HER2/ERBB2). We found a high frequency of nontypical/nonductal histomorphological subtypes (55.2%) and of the usually rare BTC precursor lesion, intraductal papillary neoplasia (18.3%). Conclusions Genomic alterations in PSC-BTC include a significant number of putative actionable therapeutic targets. Notably, PSC-BTC shows a distinct extrahepatic morpho-molecular phenotype, independent of the anatomical location of the tumor. These findings advance our understanding of PSC-associated cholangiocarcinogenesis and provide strong incentives for clinical trials to test genome-based personalized treatment strategies in PSC-BTC.Peer reviewe
    corecore