322 research outputs found

    Harvesting, coupling and control of single exciton coherences in photonic waveguide antennas

    Full text link
    We perform coherent non-linear spectroscopy of individual excitons strongly confined in single InAs quantum dots (QDs). The retrieval of their intrinsically weak four-wave mixing (FWM) response is enabled by a one-dimensional dielectric waveguide antenna. Compared to a similar QD embedded in bulk media, the FWM detection sensitivity is enhanced by up to four orders of magnitude, over a broad operation bandwidth. Three-beam FWM is employed to investigate coherence and population dynamics within individual QD transitions. We retrieve their homogenous dephasing in a presence of spectral wandering. Two-dimensional FWM reveals off-resonant F\"orster coupling between a pair of distinct QDs embedded in the antenna. We also detect a higher order QD non-linearity (six-wave mixing) and use it to coherently control the FWM transient. Waveguide antennas enable to conceive multi-color coherent manipulation schemes of individual emitters.Comment: 7 pages, 8 Figure

    The Simulation of Smiles (SIMS) model: Embodied simulation and the meaning of facial expression

    Get PDF
    Recent application of theories of embodied or grounded cognition to the recognition and interpretation of facial expression of emotion has led to an explosion of research in psychology and the neurosciences. However, despite the accelerating number of reported findings, it remains unclear how the many component processes of emotion and their neural mechanisms actually support embodied simulation. Equally unclear is what triggers the use of embodied simulation versus perceptual or conceptual strategies in determining meaning. The present article integrates behavioral research from social psychology with recent research in neurosciences in order to provide coherence to the extant and future research on this topic. The roles of several of the brain's reward systems, and the amygdala, somatosensory cortices, and motor centers are examined. These are then linked to behavioral and brain research on facial mimicry and eye gaze. Articulation of the mediators and moderators of facial mimicry and gaze are particularly useful in guiding interpretation of relevant findings from neurosciences. Finally, a model of the processing of the smile, the most complex of the facial expressions, is presented as a means to illustrate how to advance the application of theories of embodied cognition in the study of facial expression of emotion.Peer Reviewe

    The future of SIMS: Who embodies which smile and when?

    Get PDF
    The set of 30 stimulating commentaries on our target article helps to define the areas of our initial position that should be reiterated or else made clearer and, more importantly, the ways in which moderators of and extensions to the SIMS can be imagined. In our response, we divide the areas of discussion into (1) a clarification of our meaning of “functional,” (2) a consideration of our proposed categories of smiles, (3) a reminder about the role of top-down processes in the interpretation of smile meaning in SIMS, (4) an evaluation of the role of eye contact in the interpretation of facial expression of emotion, and (5) an assessment of the possible moderators of the core SIMS model. We end with an appreciation of the proposed extensions to the model, and note that the future of research on the problem of the smile appears to us to be assured.Peer Reviewe

    Search for low instability strip variables in the young open cluster NGC 2516

    Full text link
    In this paper we revise and complete the photometric survey of the instability strip of the southern open cluster NGC 2516 published by Antonello and Mantegazza (1986). No variable stars with amplitudes larger than 0m.020^m.02 were found. However by means of an accurate analysis based on a new statistical method two groups of small amplitude variables have been disentangled: one with periods <0d.25< 0^d.25 (probably δ\delta Scuti stars) and one with periods >0d.025>0^d.025. The position in the HR diagram and the apparent time-scale may suggest that the stars of the second group belong to a recently discovered new class of variables, named γ\gamma Dor variables. They certainly deserve further study. We also present a comparison between the results of the photometric survey and the available pointed ROSAT observations of this cluster.Comment: 7 pages, 2 ps figures. Accepted for P.A.S.

    Formation dynamics of ultra-short laser induced micro-dots in the bulk of transparent materials

    Get PDF
    In this paper, we study the formation dynamics of ultra-short laser-induced micro dots under the surface of transparent materials. Laser-induced micro dots find their application in direct part marking, to address full life cycle traceability. We first demonstrate the possibility of direct laser part marking into the cladding of an optical fiber. Then, we monitor the laser affected zone with the help of a time-resolved phase contrast microscopy setup in a fused silica substrate. We show that the transient energy relaxation processes affect the host material over a region that exceeds the micro dot size by several micrometers

    A cost-effective method to quantify biological surface sediment reworking

    Get PDF
    We propose a simple and inexpensive method to determine the rate and pattern of surface sediment reworking by benthic organisms. Unlike many existing methods commonly used in bioturbation studies, which usually require sediment sampling, our approach is fully non-destructive and is well suited for investigating non-cohesive fine sediments in streams and rivers. Optical tracer (e.g., luminophores or coloured sand) disappearance or appearance is assessed through time based on optical quantification of surfaces occupied by tracers. Data are used to calculate surface sediment reworking (SSR) coefficients depicting bioturbation intensities. Using this method, we evaluated reworking activity of stream organisms (three benthic invertebrates and a fish) in laboratory microcosms mimicking pool habitats or directly in the field within arenas set in depositional zones. Our method was sensitive enough to measure SSR as low as 0.2 cm2.d-1, such as triggered by intermediate density (774 m-2) of Gammarus fossarum (Amphipoda) in microcosms. In contrast, complex invertebrate community in the field and a fish (Barbatula barabatula) in laboratory microcosms were found to yield to excessively high SSR (>60 cm2.d-1). Lastly, we suggest that images acquired during experiments can be used for qualitative evaluation of species-specific effects on sediment distribution

    Neoadjuvant radiochemotherapy for locally advanced gastric cancer: a phase I-II study

    Get PDF
    Background: To study in a phase I-II trial the maximum tolerated dose, the toxicity, and the tolerance of adding radiotherapy to systemic chemotherapy administered preoperatively in patients with locoregionally advanced gastric adenocarcinoma. Patients and methods: Patients with adenocarcinoma of the stomach (T3-4Nany or TanyN+), performance status ≤1, normal hematological, hepatic and renal functions received two cycles of cisplatin 100 mg/m2 on day 1, 5-FU 800 mg/m2 on days 1 to 4 and leucovorin 60 mg b.i.d. on days 1 to 4 q3w, concomitantly with radiation therapy escalated in three dose tiers (31.2, 38.4 and 45.6 Gy). Results: Nineteen patients were accrued and 18 completed neoadjuvant therapy. Major toxicity consisted of grade 3/4 leucopenia and mucositis in 89% and 36% of the patients, respectively. Only one episode of febrile neutropenia was recorded. Dose level number 2 (38.4 Gy) with the chemotherapy given q4w is the recommended dose level. All patients were subsequently operated and no fatalities occurred. Pathological assessment showed one complete and eight partial responses. Two- and 3-year relapse-free survival rates were 57% and 50%, respectively. Only one patient relapsed locally. The peritoneum was the most frequent site of relapse. Conclusions: This neoadjuvant therapeutic program is relatively well tolerated, does not seem to increase the operative risk, and might increase the locoregional control of the disease. The frequency of peritoneal involvement in relapsing patients underscores the need for a more effective systemic treatmen

    Enhancement of tissue lesion depth by dual wavelength irradiation with the Nd-YAG/KTP laser: Perspectives for laser prostatectomy

    Get PDF
    The Nd-YAG/KTP laser coagulates and vaporizes prostate tissue. The objective of this study was to investigate the combined effects of both wavelengths and to determine the irradiation parameters allowing the largest lesion volume. Chicken breast tissue was irradiated ex vivo. Consecutive 1064 and 532 nm Nd-YAG/KTP laser irradiations were performed for different combinations (30 W/10 W, 20 W/20 W, 10 W/30 W) with variable total fluence (1200 J, 2400 J, 3600 J) and compared to isofluent single wavelengths at 40 W irradiation. The depths, diameters and volumes of the total lesion as well as the vaporization effects of the 532 nm wavelength on normal and on priorly coagulated tissue were analysed. Maximum total lesion depths (p< 0.001) were found under combined Nd-YAG/KTP (20 W/20 W) irradiation conditions. Ablation efficacy of the 532 nm wavelength was reduced after prior 1064 nm irradiation, but crater depths were increased. Dual wavelength irradiation with the Nd-YAG/KTP laser induces a specific denaturation process. This may represent a new approach to increase the depth of coagulation necrosis, and thus the treated volume, thereby improving long-term result

    Dynamics of excitons in individual InAs quantum dots revealed in four-wave mixing spectroscopy

    Get PDF
    We acknowledge the support by the ERC Starting Grant PICSEN, contract no. 306387. D.E.R. is grateful for financial support from the DAAD within the P.R.I.M.E. program.A detailed understanding of the population and coherence dynamics in optically driven individual emitters in solids and their signatures in ultrafast nonlinear-optical signals is of prime importance for their applications in future quantum and optical technologies. In a combined experimental and theoretical study on exciton complexes in single semiconductor quantum dots we reveal a detailed picture of the dynamics employing three-beam polarization-resolved four-wave mixing (FWM) micro-spectroscopy. The oscillatory dynamics of the FWM signals in the exciton-biexciton system is governed by the fine-structure splitting and the biexciton binding energy in an excellent quantitative agreement between measurement and analytical description. The analysis of the excitation conditions exhibits a dependence of the dynamics on the specific choice of polarization configuration, pulse areas and temporal ordering of driving fields. The interplay between the transitions in the four-level exciton system leads to rich evolution of coherence and population. Using two-dimensional FWM spectroscopy we elucidate the exciton-biexciton coupling and identify neutral and charged exciton complexes in a single quantum dot. Our investigations thus clearly reveal that FWM spectroscopy is a powerful tool to characterize spectral and dynamical properties of single quantum structures.PostprintPostprintPeer reviewe

    Characterizations of how species mediate ecosystem properties require more comprehensive functional effect descriptors

    Get PDF
    The importance of individual species in mediating ecosystem process and functioning is generally accepted, but categorical descriptors that summarize species-specific contributions to ecosystems tend to reference a limited number of biological traits and underestimate the importance of how organisms interact with their environment. Here, we show how three functionally contrasting sediment-dwelling marine invertebrates affect fluid and particle transport - important processes in mediating nutrient cycling - and use high-resolution reconstructions of burrow geometry to determine the extent and nature of biogenic modification. We find that individual functional effect descriptors fall short of being able to adequately characterize how species mediate the stocks and flows of important ecosystem properties and that, in contrary to common practice and understanding, they are not substitutable with one another because they emphasize different aspects of species activity and behavior. When information derived from these metrics is combined with knowledge of how species behave and modify their environment, however, detailed mechanistic information emerges that increases the likelihood that a species functional standing will be appropriately summarized. Our study provides evidence that more comprehensive functional effect descriptors are required if they are to be of value to those tasked with projecting how altered biodiversity will influence future ecosystems
    corecore