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1. SAMPLE PREPARATION AND CHARACTERIZATION

The MBE grown sample contains a layer of annealed and capped
InAs QDs with a nominal density of 2.2× 109 cm−2. They are
embedded in an asymmetric GaAs/AlGaAs micro-cavity ex-
hibiting a low quality factor [1–4] Q = 170, resulting in a mode
centered at 910-915 nm with a FWHM of around 10 nm. The
femto-second laser pulse trains are spectrally matched with such
a large spectral window and efficiently penetrate into the struc-
ture. Furthermore, the intra-cavity field is enhanced by a factor
of
√

Q = 13 improving the coupling between E1,2,3 and the elec-
tric dipole moment µ of the transition. Thus, the resonant field
required to drive the FWM is reduced by a factor Q3/2 ' 2200
and the signal-to-noise ratio of the interferometrically detected
FWM is amplified accordingly.

The sample is intentionally doped with Si (δ-doping with a
nominal density of 1.8× 1010 cm−2; layer located 10 nm below
the QD plane). To identify the spatial and spectral location of
the QD transitions we perform hyperspectral imaging [5, 6]. In
Fig. S1 a we present an example of such imaging performed
in a confocal micro-photoluminescence (PL) experiment. Each
bright spot corresponds to a QD emission, primarily attributed
to recombination of negative trions (GX−) due to the n-doping.
We detect high PL counting rates on the order of 105/sec at

the QD saturation. Such an unusually bright PL emission is
attributed to the presence of oval photonic defects on the sample
surface [3, 4], acting as natural micro-lenses [7]. Additionally,
the inhomogeneous broadening due to spectral wandering is
largely reduced [1, 4] indicating an excellent structural quality
of these QDs.

The FWM hyperspectral imaging at the same sample area
and spectral range is shown in Fig. S1 b. The three QDs at
(x, y) ≈ (−2 µm,−5 µm), (2 µm,−5 µm) and (7 µm,−4 µm)
(marked with green boxes in Fig. S1) exhibit both PL and FWM
signals and were used to align the figures. However, other QDs
show different distribution of the peak heights in FWM as com-
pared to the PL. This is expected from the different properties
determining the signal strength in both measurements: in FWM
the dipole moment is probed, while in PL generally the more
complex phonon-assisted carrier relaxation combined with a
capture of the exciton also lead to a signal. To demonstrate the
high spectral and spatial selectivity of the FWM compared to the
PL, Figs. S1 c and d compare both PL and FWM obtained from
the same sample spot, defined by the diffraction limited size
(0.7 µm) of the excitation laser. In Fig. S1 c we show a neutral
exciton complex, which is only present in few % of the QDs.
The exciton-biexciton system is straightforwardly recognized
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Fig. S1. Sample characterization. Hyperspectral image of the
sample for (a) PL and (b) FWM measurements. (c,d) PL and
FWM spectra of a single QD. Blue indicates the spectrum of
the laser pulse as reference. (e,f) Hyperspectral FWM image of
of GX and XB transition.

in FWM, but it is difficult to be identified in PL, because of a
lacking XB emission line. Figure S1 d shows the PL and FWM
spectra of the fundamental trion line corresponding to a nega-
tively charged QD. A zoom-in of the spatial shape of the GX
and XB transition is shown in Fig. S1 e and f, respectively.

2. THEORETICAL MODEL

The Hamiltonian for circularly polarized excitation (cf. Fig. 1 a)
reads

H = ∑
ν

h̄ων |ν〉 〈ν| −∑
ν,ν′

h̄Mνν′ |ν〉
〈
ν′
∣∣+ Hexc (1)

with the basis states

|ν〉 ∈ {|G〉 , |σ−〉 , |σ+〉 , |B〉} . (2)

Correspondingly the energies are h̄ωG = 0, h̄ωσ− = h̄ωσ+ =
h̄ωσ and h̄ωB = 2h̄ωσ − ∆, where ∆ is the BBE. Due to the
Coulomb exchange interaction the two single exciton levels in-
teract via

Hexc =
δ

2
(∣∣σ−〉 〈σ+

∣∣+ ∣∣σ+〉 〈σ−∣∣) (3)

The light field coupling

M =


0 Ω∗σ+ Ω∗σ− 0

Ωσ+ 0 0 Ω∗σ−

Ωσ− 0 0 Ω∗σ+

0 Ωσ− Ωσ+ 0

 (4)

describes the allowed transitions via the Rabi frequencies

Ωσ± = ∑
j

M0
h̄

Ej · e∗σ± . (5)

M0 is the bulk dipole matrix element and eσ± the polarization
vector. The polarization of the system is given by

p = M0
(
|0〉
〈
σ+
∣∣+ ∣∣σ−〉 〈B|) eσ+

+ M0
(
|0〉
〈
σ−
∣∣+ ∣∣σ+〉 〈B|) eσ− .

This Hamiltonian can be transformed into the basis for lin-
early polarized excitons (cf. Fig. 1 b), which are the eigenstates
of ∑ν h̄ων |ν〉 〈ν|+ Hexc. The transformation is calculated by

|X〉 =
1√
2

(
|σ+〉+ |σ−〉

)
, (6)

|Y〉 =
i√
2

(
|σ+〉 − |σ−〉

)
. (7)

By the diagonalization the degeneracy of the single excitons
is lifted and the exciton energies are h̄ωX = h̄ωσ − δ/2 and
h̄ωY = h̄ωσ + δ/2. The light field coupling changes to

M =


0 Ω∗X Ω∗Y 0

ΩX 0 0 Ω∗X
ΩY 0 0 Ω∗Y
0 ΩX ΩY 0

 (8)

with

ΩX =
1√
2
(Ωσ+ + Ωσ− ) , ΩY =

i√
2
(Ωσ+ −Ωσ− ) .

The time evolution of the density matrix $ is calculated as-
suming a sum of δ-pulses yielding the Rabi frequencies for cir-
cular polarization

Ωσ± = ∑
j

θσ±
j

2
eiϕσ±

j δ(t− tj) (9)

with arrival times tj, pulse areas θσ±
j and phases ϕσ±

j . For a pulse
sequence with linear polarizations αj with respect to X and pulse
areas θj the Rabi frequencies read

ΩX = ∑
j

√
2 θjeiφj cos(αj) ,

ΩY = ∑
j
−
√

2 θjeiφj sin(αj) .

In the case of δ-pulses the time evolution of the system can be
calculated by matrix multiplication [8]. In between the pulses
the dynamics is given by

ρνν′ (t) = ρνν′ (0)eiΛνν′ (t) (10)



with

Λνν′ = ων −ων′ + iβνν′ ,

β =


0 β β βB

β 0 βXY β

β βXY 0 β

βB β β 0

 .

β, βB and βXY are the dephasing rates. The decay of the exciton
and biexciton is modeled by a single decay rate γ, which leads
to the following equations of motion for the diagonal elements
of the density matrix:

$BB(t) = $BB(0)e−2γt

$XX(t) = [$XX(0) + $BB(0)(1− e−γt)]e−γt

$YY(t) = [$YY(0) + $BB(0)(1− e−γt)]e−γt

$GG(t) = 1− [$XX(0) + $YY(0) + $BB(0)(2− e−γt)]e−γt

The time t = 0 corresponds to the time directly after each pulse.
>From this, we can calculate the dynamics of all elements of

the density matrix, in other words, of all populations and coher-
ences. The FWM signal is theoretically extracted by analyzing
the phase dependence of the polarization. In general, all polar-
izations have parts depending on different orders and combina-
tions of the phases ϕi of the pulses. The two-pulse FWM for co-
herence dynamics is given by the phase combination (2ϕ2 − ϕ1),
while the three-pulse FWM for the population dynamics is char-
acterized by the phase combination (ϕ3 + ϕ2 − ϕ1) which model
the heterodyning at (2Ω2 −Ω1) and (Ω3 + Ω2 −Ω1). This iden-
tifies the polarization of the FWM signal indicated by pFWM. For
the sake of simplicity, in the case of population dynamics we use
τ12 = 0 ps to mimic the short time delay between the first two
pulses. From the polarization the FWM signal Sνν′ is obtained
by a Fourier transform at the selected frequency

Sνν′ =

∣∣∣∣ ∫ ∞

0
pFWM eiωt dt

∣∣∣∣
ω=ων−ων′

. (11)

If the polarization α is not along one axis of the QD, the signals
are added according to the angle of the heterodyning (reference)
beam αr with SGXY = cos2(αr)SGX + sin2(αr)SGY .

In the FWM signal, charge fluctuations can play an impor-
tant role leading to an inhomogeneous broadening via spectral
wandering of individual transitions. This phenomenon induces
a photon echo in FWM transients of single QDs, when probing
the coherence [9–11]. The residual inhomogeneous broadening
(i.e. up to several homogeneous linewidths) can be included in
the calculations by multiplying the FWM-polarization with a
Gaussian function [10] as follows:

pFWM → pFWM e−
(t−τ12)

2

2σ2 (12)

For most cases the inhomogeneous broadening can be neglected.
We only included it to model the data in Fig. 4 with σ = 67 ps,
which corresponds to an energetic broadening of h̄σ ≈ 10 µeV.
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