558 research outputs found

    Experimental determination of cosmic ray charged particle intensity profiles in the atmosphere

    Get PDF
    Absolute cosmic-ray free air ionization and charged particle fluxes and dose rates throughout the atmosphere were measured on a series of balloon flights that commenced in 1968. Argon-filled ionization chambers equipped with solid-state electrometers, with different gas pressures and steel wall thicknesses, and a pair of aluminum-wall Gm counters have provided the basic data. These data are supplemented by measurements with air-filled and tissue equivalent ionization chambers and a scintillation spectrometer. Laboratory experiments together with analyses of the theoretical aspects of the detector responses to cosmic radiation indicate that these profiles can be determined to an overall accuracy of + or - 5 percent

    Real-Time RF-DNA Fingerprinting of ZigBee Devices Using a Software-Defined Radio with FPGA Processing

    Get PDF
    ZigBee networks are increasingly popular for use in medical, industrial, and other applications. Traditional security techniques for ZigBee networks are based on presenting and verifying device bit-level credentials (e.g. keys). While historically effective, ZigBee networks remain vulnerable to attack by any unauthorized rogue device that can obtain and present bit-level credentials for an authorized device. This research focused on utilizing a National Instruments (NI) X310 Software-Defined Radio (SDR) hosting an on-board Field Programmable Gate Array (FPGA). The demonstrations included device discrimination assessments using like-model ZigBee AVR RZUSBstick devices and included generating RF fingerprints in real-time, as an extension to AFIT\u27s RF-DNA fingerprinting work. The goal was to develop a fingerprinting process that was both 1) effective at discriminating between like-model ZigBee devices and 2) efficient for implementation in FPGA hardware. As designed and implemented, the full-dimensional FPGA fingerprint generator only utilized approximately 7% of the X310 Kintex-7 FPGA resources. The full-dimensional fingerprinting performance of using only 7% of FPGA resources demonstrates the feasibility for real-time RF-DNA fingerprint generation and like-model ZigBee device discrimination using an SDR platform

    Investigation of DC-8 nacelle modifications to reduce fan-compressor noise in airport communities. Part 3 - Static tests of noise suppressor configurations, May 1967 - October 1969

    Get PDF
    Static tests of noise suppressor configurations of DC-8 aircraft nacelle modifications to reduce fan-compressor noise levels - Part

    Utility-Scale Concentrating Solar Power and Photovoltaic Projects: A Technology and Market Overview

    Get PDF
    Over the last several years, solar energy technologies have been, or are in the process of being, deployed at unprecedented levels. A critical recent development, resulting from the massive scale of projects in progress or recently completed, is having the power sold directly to electric utilities. Such 'utility-scale' systems offer the opportunity to deploy solar technologies far faster than the traditional 'behind-the-meter' projects designed to offset retail load. Moreover, these systems have employed significant economies of scale during construction and operation, attracting financial capital, which in turn can reduce the delivered cost of power. This report is a summary of the current U.S. utility-scale solar state-of-the-market and development pipeline. Utility-scale solar energy systems are generally categorized as one of two basic designs: concentrating solar power (CSP) and photovoltaic (PV). CSP systems can be further delineated into four commercially available technologies: parabolic trough, central receiver (CR), parabolic dish, and linear Fresnel reflector. CSP systems can also be categorized as hybrid, which combine a solar-based system (generally parabolic trough, CR, or linear Fresnel) and a fossil fuel energy system to produce electric power or steam

    Optimizing the Pedagogical Efficacy of Moodle

    Get PDF
    Course Management Systems (CMS) such as Moodle, D2L, and Blackboard are often used as auxiliary resources for both traditional and online courses. As CSB/SJU faculty, many of us are developing and using creative CMS resources with the goal of positive pedagogical impact. How is the effectiveness of these resources assessed? Which resources are found most useful by students? How can faculty maximize the pedagogical value of CMS? This Thursday Forum presentation shows participants the results of a study directed toward answering these questions. During three introductory financial accounting courses conducted in 2009, 2010, and 2011, Camtasia videos, assignment solutions, notes, slides, WebEx recordings, homework discussion forums, and other Moodle resources were available to students. Analyses were performed to determine whether student Moodle use correlated with student performance. A pre- and post-course exam was administered to assess student learning as related to Moodle use. In addition, a student survey was conducted to gather evidence about which resources were deemed most useful by students and to compare student perceptions of usefulness with actual use. The forum presentation also shows how to track student use of Moodle resources via the direct and indirect assessment methods used in the study. Examples of student preferred resources are also shown

    An experiment to measure the energy spectrum of cosmic ray antiprotons from 100 to 1000 MeV

    Get PDF
    Production models were developed and the confirmation of each one had significant astrophysical impact. These include radical modifications of propagation models, cosmic ray antiprotons injection from neighboring domains of antimatter, p production by evaporating primordial black holes, and cosmic ray p's as annihilation products of supersymmetry particles that might make up the dark dynamical mass of the Galaxy. It is that p's originating from supersymmetric parents might have distinct spectral features that would survive solar modulation; in one model, higgsino annihilation proceeds through the bb quark-antiquark channel, producing a spectral bump at approx. 0.3 GeV in the p spectrum

    Watching My Mind Unfold versus Yours: An fMRI Study Using a Novel Camera Technology to Examine Neural Differences in Self-projection of Self versus Other Perspectives

    Get PDF
    Self-projection, the capacity to re-experience the personal past and to mentally infer another person's perspective, has been linked to medial prefrontal cortex (mPFC). In particular, ventral mPFC is associated with inferences about one's own self, whereas dorsal mPFC is associated with inferences about another individual. In the present fMRI study, we examined self-projection using a novel camera technology, which employs a sensor and timer to automatically take hundreds of photographs when worn, in order to create dynamic visuospatial cues taken from a first-person perspective. This allowed us to ask participants to self-project into the personal past or into the life of another person. We predicted that self-projection to the personal past would elicit greater activity in ventral mPFC, whereas self-projection of another perspective would rely on dorsal mPFC. There were three main findings supporting this prediction. First, we found that self-projection to the personal past recruited greater ventral mPFC, whereas observing another person's perspective recruited dorsal mPFC. Second, activity in ventral versus dorsal mPFC was sensitive to parametric modulation on each trial by the ability to relive the personal past or to understand another's perspective, respectively. Third, task-related functional connectivity analysis revealed that ventral mPFC contributed to the medial temporal lobe network linked to memory processes, whereas dorsal mPFC contributed to the fronto-parietal network linked to controlled processes. In sum, these results suggest that ventral–dorsal subregions of the anterior midline are functionally dissociable and may differentially contribute to self-projection of self versus other

    Lexical Predictability during Natural Reading: Effects of Surprisal and Entropy Reduction

    Get PDF
    What are the effects of word‐by‐word predictability on sentence processing times during the natural reading of a text? Although information complexity metrics such as surprisal and entropy reduction have been useful in addressing this question, these metrics tend to be estimated using computational language models, which require some degree of commitment to a particular theory of language processing. Taking a different approach, this study implemented a large‐scale cumulative cloze task to collect word‐by‐word predictability data for 40 passages and compute surprisal and entropy reduction values in a theory‐neutral manner. A separate group of participants read the same texts while their eye movements were recorded. Results showed that increases in surprisal and entropy reduction were both associated with increases in reading times. Furthermore, these effects did not depend on the global difficulty of the text. The findings suggest that surprisal and entropy reduction independently contribute to variation in reading times, as these metrics seem to capture different aspects of lexical predictability

    Potential of Securitization in Solar PV Finance

    Full text link
    This report aims to demonstrate, hypothetically and at a high level, what volumes of solar deployment could be supported given solar industry access to the capital markets in the form of security issuance. Securitization is not anticipated to replace tax equity in the near- to mid-term, but it could provide an additional source of funds that would be comparatively inexpensive and could reduce the weighted average cost of capital for a given solar project or portfolio. Thus, the potential to securitize solar assets and seek financing in the capital markets could help to sustain the solar industry when the investment tax credit (ITC) -- one of the federal incentives that has leveraged billions of dollars of private capital in the solar industry -- drops from 30% to 10% at the close of 2016. The report offers analysis on the size of the U.S. third-party financed solar market, as well as on the volumes (in MW) of solar asset origination possible through a $100 million securitization fund (assuming no overcollateralization). It also provides data on the size of the relevant securities markets and how the solar asset class may fit into these markets

    Examining the stigma of mental illness across the lifespan

    Get PDF
    Stigma related to mental illness can deter help-seeking in those who need it and result in discrimination. Studies indicate that negative attitudes toward and social distance from the mentally ill are greater among males, and those with less education and less familiarity with mental illness. This study examines attitudes toward the mentally ill among older and young adults in order to determine whether differences exist. We proposed that older adults might have more positive attitudes toward and less social distance from people with mental illness. Participants were 70 college-age students enrolled in a Psychology 105 course and 78 older adults involved in educational programming at a Senior Center. The survey consisted of a set of demographic questions, the Community Attitudes toward the Mentally Ill (CAMI) Survey, and a modified version of the Social Distance Scale. Older adults indicated greater familiarity with mental illness, but more negative attitudes and more social distance than college-age respondents. Across age groups, women and those who were familiar with mental illness scored higher on the positive attitudes subscale and lower on the negative attitudes subscale of the CAMI. Simply having familiarity with mental illness does not mean attitudes will be more positive and that attributions made by older adults may differ from those of younger adults
    corecore