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Abstract 

What are the effects of word-by-word predictability on sentence processing times during the 

natural reading of a text? Although information-complexity metrics such as surprisal and entropy 

reduction have been useful in addressing this question, these metrics tend to be estimated using 

computational language models, which require some degree of commitment to a particular 

theory of language processing. Taking a different approach, the current study implemented a 

large-scale cumulative cloze task to collect word-by-word predictability data for 40 passages and 

compute surprisal and entropy reduction values in a theory-neutral manner. A separate group of 

participants read the same texts while their eye movements were recorded. Results showed that 

increases in surprisal and entropy reduction were both associated with increases in reading times. 

Further, these effects did not depend on the global difficulty of the text. The findings suggest that 

surprisal and entropy reduction independently contribute to variation in reading times, as these 

metrics seem to capture different aspects of lexical predictability. 
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1. Introduction  

The predictability of a word in context is known to be one of the most important factors 

affecting the targeting of saccades and duration of fixations during reading (for reviews, see 

Clifton et al., 2016; Rayner, 1998; Staub, 2015). Although this basic finding is virtually 

undisputed, there is considerably less agreement regarding how best to conceptualize lexical 

predictability in a way that is ecologically valid and nuanced, as compared to the stark contrasts 

that tend to be employed in experimental investigations. The earliest work on this topic 

demonstrated effects of lexical predictability using experimental manipulations as in (1) that 

capitalize on systematic differences in cloze probability (Taylor, 1953), or the proportion of 

participants who provide a particular target word as a completion of an initial sentence stem. 

Many eyetracking experiments have demonstrated robust effects of predictability in contexts like 

these, such that predictable words (e.g., cake in 1a) are skipped more often and elicit shorter 

fixation durations when they are fixated compared to less predictable words (e.g., pies in 1b) 

(e.g., Balota, Pollatsek, & Rayner, 1985; Choi, Lowder, Ferreira, Swaab, & Henderson, 2017; 

Drieghe, Rayner, & Pollatsek, 2005; Ehrlich & Rayner, 1981; Rayner & Well, 1996). 

(1a) Since the wedding was today, the baker rushed the wedding cake to the reception. 
(1b) Since the wedding was today, the baker rushed the wedding pies to the reception. 

 Experimental results using comparisons like these have been extremely useful in 

developing models of eye-movement control during reading (e.g., Engbert, Nuthmann, Richter, 

& Kliegl, 2005; Reichle, Rayner, & Pollatsek, 2003). Beyond the eyetracking domain, cloze 

probability has been shown to reliably modulate the brain’s response to lexical predictability, as 

evidenced by reduced amplitude of the N400 event-related potential (ERP) component for 

predictable versus unpredictable words (e.g., Federmeier & Kutas, 1999; Kutas & Hillyard, 

1984). In addition, one of the reasons this approach is so popular stems from its face validity—
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that is, the cloze task is intuitively appealing as a method for quantifying predictability because 

the cloze probabilities for each target word are derived from samples of participants whose 

explicit task is to guess the next word of the sentence.  

 At a theoretical level, questions about lexical predictability factor into a broader trend in 

cognitive science that casts prediction as a core explanatory principle of information processing 

(Clark, 2013). Under such a predictive processing framework, the brain uses relevant contextual 

knowledge to preactivate features of an upcoming stimulus or event before it is perceived, which 

leads to processing facilitation when the perception matches the prediction, or error-driven 

learning when the two do not match. Indeed, this view has become quite popular in the sentence-

processing literature, with a growing body of evidence now suggesting that language 

comprehenders can rapidly generate predictions about upcoming input—from lower levels of 

sublexical and lexical representations up to higher levels of representation associated with event 

structures and schematic knowledge (see Kuperberg & Jaeger, 2016, for a recent review).  

Although results from cloze experiments are sometimes taken as evidence supporting the 

predictive nature of human sentence processing, it is important to note the drawbacks of this task 

as it is typically used that limit its generalizability. A cloze task normally includes a single target 

word per sentence in which the researcher’s goal is to obtain a high cloze and low cloze 

completion for each item. As a result, these sentences tend to be highly constraining by design, 

to maximize the chances that a highly predictable completion will be produced (Ferreira & 

Lowder, 2016). This strategy is designed to ensure that a predictability effect will be observed 

between the high cloze and low cloze conditions in the main experiment. As a result, artificially 

constraining sentences that have been constructed to create strong predictions cannot be viewed 

as compelling evidence for the existence of an inherently predictive language processing system. 
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Moving away from the traditional cloze task, Luke and Christianson (2016) recently 

reported a large-scale study in which cloze values were obtained for every word across several 

multi-sentence texts. Values from this cumulative cloze task were then used to model eyetracking 

data to better understand the relationships between lexical prediction and online processing. 

Their results showed a facilitative effect of cloze probability on processing times—a relationship 

that emerged across the full range of cloze values and affected early and later eye-movement 

measures. Further, Luke and Christianson conducted a careful analysis of instances of 

misprediction (i.e., instances in which a word other than the target word was strongly predicted). 

Their results showed no evidence of a processing cost for these cases of misprediction, but rather 

some evidence that processing was facilitated when a given target word has a more expected 

competitor. These results suggest that prediction during reading occurs in a graded fashion, 

rather than the strict all-or-none process that often characterizes lexical prediction.  

In addition to the cloze approach, we have recently seen the development of 

computational models of sentence processing that aim to quantify predictability for every word 

of a sentence probabilistically. This approach combines foundational work from information 

theory (Shannon, 1948) with more recent advances in computational language modeling to 

generate estimates of information complexity at each word of the sentence that can then be 

related to online sentence processing measures (Hale, 2001; Levy, 2008). The most common of 

these metrics is surprisal, defined as the negative log probability of a word, given its preceding 

context: surprisal(wi) = -log P(wi|w1…wi-1). As such, surprisal measures the relative 

unexpectedness of a word in context. In addition, sophisticated computational language models 

make it simple to estimate surprisal values for any input sentence, thus making it possible to 

investigate word-by-word predictability for sentences that are not artificially constraining. Using 
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this approach, many studies have now demonstrated a relationship between surprisal and online 

sentence processing measures. For example, higher surprisal values have been shown to be 

associated with longer reading times (Boston, Hale, Kliegl, Patil, & Vasishth, 2008; Demberg & 

Keller, 2008; Smith & Levy, 2013), larger N400 amplitudes in ERP research (Frank, Otten, 

Galli, & Vigliocco, 2015), and increased activation in several language-related brain areas as 

measured by functional MRI (Brennan, Stabler, Van Wagenen, Luh, & Hale, 2016; Henderson, 

Choi, Lowder, & Ferreira, 2016; Willems, Frank, Nijhof, Hagoort, & van den Bosch, 2016).  

A different information complexity metric that has received less attention in the sentence-

processing literature is entropy, a measure designed to quantify the degree of uncertainty about 

what is being communicated as a sentence unfolds1. The entropy H of the probability distribution 

over X is represented as a function of the probabilities of the various possible outcomes: 

𝐻(𝑋) = −∑𝑃(𝑥)log2𝑃(𝑥)

𝑥∈𝑋

 

Thus, higher entropy is associated with more uncertainty about the value of x, such that entropy 

is maximal when all possible values of x have the same probability, and entropy is zero when 

there is 100% certainty about the value of x. 

 Importantly though, entropy fluctuates as we encounter each new word, with incoming 

words affecting expectations regarding what will come next. This observation led Hale (2003, 

2006, 2011) to propose entropy reduction as a key complexity metric to represent the amount of 

information gained at each word. So, if entropy at word wi is represented as Hi, then entropy 

reduction at wi is computed as Hi – Hi-1. The fundamental idea is that if entropy is reduced from 

                                                           
1 Entropy is closely related to the idea of contextual constraint, which is often operationalized through the cloze task. 

A point in the sentence where no single word is highly predictable is said to be low in constraint, which corresponds 

to a state of high entropy. 
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one word to the next, then communicative uncertainty has been reduced, and the comprehender 

has done information-processing work. In contrast, cases in which entropy increases from one 

word to the next are represented as zero, under the assumption that an increase in uncertainty 

should not affect processing. The important claim is that surprisal and entropy reduction capture 

unique aspects of information complexity and, as such, should both serve as useful metrics for 

quantifying word-by-word predictability during incremental sentence processing (Hale, 2016). 

 Although some have expressed skepticism regarding the usefulness of entropy reduction 

as a complexity metric (Levy, Fedorenko, & Gibson, 2013; Levy & Gibson, 2013), there is 

growing evidence suggesting that entropy reduction is in fact a significant predictor of sentence 

processing times. Indeed, several studies have now shown that greater surprisal and greater 

entropy reduction independently contribute to increased reading times (Frank, 2013; Linzen & 

Jaeger, 2016; Wu, Bachrach, Cardenas, & Schuler, 2010). Two methodological points about this 

previous work are worth noting though. First, all three of these studies used self-paced reading as 

their dependent measure. Although self-paced reading is a commonly used approach in 

psycholinguistic research, it does not accurately reflect the normal reading process, as it tends to 

be rather slow, prone to strategic processing, and prohibits the reader from gaining parafoveal 

preview information or regressing to previous portions of the text. Second, all three of these 

studies estimated their measures of surprisal and entropy reduction using some form of statistical 

language model, including a recurrent neural network model (Frank, 2013), an algorithmic parser 

operating within a probabilistic context-free grammar (Linzen & Jaeger, 2016), and a 

hierarchical hidden Markov model (Wu et al., 2010).  

 Indeed, most of the previous work aimed at relating metrics like surprisal and entropy 

reduction to human sentence processing data estimate these metrics using computational 



8 
 

sentence parsers or some other type of statistical language model. As noted above, this approach 

has an advantage over the traditional cloze task in that values can be estimated for every word in 

the sentence, allowing researchers to study naturalistic sentences as opposed to sentences 

designed to be artificially constraining. However, this approach also has several limitations. 

First, there are a number of technical choices to make when selecting a computational language 

model, and these choices require some degree of commitment to a theory of language. For 

example, the researcher has to choose whether to estimate language statistics using a 

computational sentence parser or a connectionist model. If using a parser, there are additional 

choices to make regarding what sort of grammar the parser will assume, as well as what parsing 

algorithm will be implemented. These choices carry with them implicit assumptions about the 

nature of human language processing that researchers may not want to commit to. Second, any 

language model must first be trained on a corpus of language, and this raises additional questions 

regarding what constitutes an appropriate training corpus and how large that corpus must be 

before the model can perform adequately. It is not uncommon for language models to be trained 

on a corpus of only about one million words—far smaller than the vast amount of language 

experience adult humans have. Finally, computational language models tend to assume that the 

sentences they take as their input are independent from one another. This makes it problematic to 

derive accurate metrics for words appearing in connected texts, in which the sentences within the 

text refer to information from previous sentences.  

 The goal of the current study was to examine the contributions of surprisal and entropy 

reduction to word-by-word reading times. Our approach differs from previous treatments of this 

topic in two important ways. First, we used eyetracking as our measure of online sentence 

processing. In contrast to the slow, unnatural button-press responses required in self-paced 
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reading, the use of eyetracking allows participants to read text naturally, which includes access to 

parafoveal preview information and the ability to regress to previous portions of the text that are 

denied in self-paced reading. In addition, eyetracking provides a much more dynamic measure of 

reading, including rich information about the time course of processing from early stages of 

word recognition to later stages of text integration. Second, we derived our measures of surprisal 

and entropy reduction from a cumulative cloze task rather than a computational language model. 

In the cumulative cloze task (see also Luke & Christianson, 2016), participants are given the first 

word of a paragraph and are instructed to guess what they think the most likely second word is. 

The second word is then revealed, and the task is to guess the third word, and so on. This 

approach has a number of advantages over both the traditional cloze task and the estimation of 

complexity metrics from computational language models. First, we can use human predictability 

data at each word of a text to compute surprisal and entropy reduction in a completely theory-

neutral manner without having to assume a grammar, implement a parsing algorithm, or choose a 

training corpus. Second, this approach allows us to use naturalistic sentences as opposed to the 

artificially constraining sentences that tend to be used in experiments employing the traditional 

cloze task. This avoids the concern that participants might notice something unusual about the 

sentences and adapt to the task or develop explicit processing strategies. Finally, this approach 

allows us to collect accurate word-by-word predictability data for sentences appearing in 

connected, meaningful discourse as opposed to sentences in isolation.  

 In the current study, values of surprisal and entropy reduction for whole paragraphs of 

text were derived from a large sample of participants who completed the cumulative cloze task. 

These paragraphs were then read by another sample of participants whose eye movements were 

recorded. In selecting our materials, we chose paragraphs that represented a wide range of 
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difficulty levels, from easy texts appropriate for children to difficult texts appropriate for college-

educated adults. We selected paragraphs representing a wide range of text difficulties to test the 

hypothesis that variability in surprisal and entropy reduction might have different effects on 

reading times depending on the global difficulty level of the text. One possibility is that the 

relationship between word-by-word complexity metrics and reading times may become stronger 

as texts become more challenging, perhaps reflecting the lower frequency of the words and 

sentential contexts encountered. Another possibility is that the effects will become weaker, 

perhaps because more difficult text makes prediction harder, leading readers to give up on the 

prediction strategy. Finally, the relationship between surprisal and entropy reduction on reading 

times might be unaffected by text difficulty, suggesting that their effects are not specific to easy 

or hard texts, but instead hold across a wide range of difficulty levels. 

2. Method 

2.1 Cumulative cloze task 

2.1.1 Participants  

A total of 1,600 participants were recruited through Amazon’s Mechanical Turk. 

Individuals were eligible to participate if they reported that they were 18 years of age or older, 

indicated that English was their native language, and their IP address registered as being within 

the United States. 

2.1.2 Materials  

Forty short passages of text were adapted from standardized reading comprehension tests: 

the Gray Oral Reading Tests—Fifth Edition (GORT) (Wiederholt & Bryant, 2012) and the Gray 

Silent Reading Tests (GSRT) (Wiederholt & Blalock, 2000). The GORT and GSRT were chosen 

because they include passages of text that represent a wide range of difficulty levels. Texts were 
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trimmed to be between 46 and 77 words long. As an objective measure of global text difficulty, 

we calculated the Flesch-Kincaid grade level of each paragraph (Kincaid, Fishburne, Rogers, & 

Chissom, 1975), which is computed from the average length of sentences and average number of 

syllables per word in the text. The score is meant to correspond roughly with the number of years 

of education required to understand the text. The 40 passages used in the current study had 

Flesch-Kincaid grade levels ranging from 1.80 to 17.46 (mean = 10.38). Across all texts, there 

were 1,152 unique words with 2,405 word tokens. 

2.1.3 Procedure  

After agreeing to participate, participants were redirected to an online survey. The 

instructions read: “In this task, you will be predicting the upcoming words of a paragraph. You 

will be given the first word of a paragraph, and your task is to predict what you think the next 

word most likely is. Type your prediction into the box, and then click the button to advance to 

the next screen. You will then see what the actual next word of the paragraph is, and you should 

again make a prediction about what you think the next word is most likely to be. You will do this 

for the entire paragraph.” After advancing past this initial instruction screen, participants saw the 

first word of a paragraph with a response box below it. At the top of this page, and on every 

subsequent page, was an abbreviated set of instructions, reminding participants to “Guess the 

most likely next word based on the words you have seen so far.” Participants typed their guess 

into the box and advanced to the next screen, at which point they saw the first two words of the 

paragraph with a response box below it. This continued for the entire paragraph such that 

participants entered predictions for all words of the paragraph except for the first word. 

Participants could not advance to the next page until entering a response in the box, nor could 

they go back to their previous responses.  
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Forty participants were randomly assigned to each of the 40 paragraphs, which resulted in 

there being an equal number of cloze responses for each word across all texts. 

2.2 Eyetracking task 

2.2.1 Participants  

Thirty-two students at the University of California, Davis participated in exchange for 

course credit. They all reported normal or corrected-to-normal vision and indicated that English 

was their native language.  

2.2.2 Materials 

Target passages for the eyetracking task were the same 40 passages used in the 

cumulative cloze task, with all words clearly visible. 

2.2.3 Procedure  

Eye movements were recorded with an EyeLink 1000 Plus system (SR Research). 

Viewing was binocular, but only the right eye was tracked, at a sampling rate of 1,000 Hz. A 

chinrest was used to minimize head movement. The eyetracker was calibrated at the beginning of 

each session and recalibrated throughout the session as needed. At the start of each trial, a 

fixation point was presented near the upper left corner of the screen, marking the place where the 

first word of the paragraph would appear. Once gaze was steady on this point, the experimenter 

presented the paragraph. After reading the paragraph, the participant pressed a button on a 

handheld console, which caused the paragraph to disappear and a true-false comprehension 

question to appear in its place. Participants pressed one button to answer “true,” and a different 

button to answer “false.” Mean comprehension-question accuracy was 92%. After the participant 

answered the question, the fixation point for the next trial appeared.  
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Participants were first presented with two filler paragraphs that were not analyzed. After 

this warm-up block, the 40 target passages were presented randomly.   

2.3 Analysis 

 Predictions in the cumulative cloze task were compared to the actual target words to 

compute a cloze probability score for every word. We then computed the negative log of each 

cloze probability to convert these scores to surprisal values. Cloze probabilities of zero cannot be 

converted to a logarithmic scale. Accordingly, we made an a priori decision to replace these 

values with half the value of the lowest nonzero cloze value before converting them to surprisal 

values (i.e., the lowest nonzero cloze value possible in this study was .025, and so cloze values of 

zero were converted to .0125). To compute entropy reduction, we first tabulated the distribution 

of guesses at each word about the upcoming word and then used these values to compute entropy 

according to the standard formula (see above). Entropy reduction was computed as the difference 

in entropy between the current word and the previous word. Cases where entropy increased from 

wi-1 to wi were coded as zero, in keeping with a central proposal of the entropy reduction 

hypothesis that increases in uncertainty do not affect processing (Hale, 2006). 

 For the eyetracking data, fixations were excluded from the analysis if they were shorter 

than 60 ms, longer than 1,200 ms, if they occurred during a track loss, or if they were 

immediately preceded or followed by a blink. In total, 12.4% of all fixations were excluded from 

the analysis. In addition, we removed the first and last words of each paragraph from the 

analysis, as well as proper nouns. For all remaining words, we computed four standard eye-

movement measures that reflect a range of processing stages (Rayner, 1998). First-fixation 

duration is the duration of the initial, first-pass fixation on a word, regardless of whether there 

are subsequent first-pass fixations on the word. Single-fixation duration is the duration of the 
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initial, first-pass fixation on a word, provided that the word received only one first-pass fixation. 

These two measures are thought to reflect the earliest stages of word recognition, including 

processes of perceptual encoding and initial lexical access. Gaze duration is the sum of all first-

pass fixations on the word and is believed to index later stages of lexical access and the 

beginning stages of semantic integration. Regression-path duration is the sum of all fixations 

beginning with the initial fixation on a word and ending when gaze is directed away from the 

region to the right. Thus, regression-path duration includes time spent rereading earlier parts of 

the sentence before the reader is ready to move to the right of the current word. Regression-path 

duration is generally thought to reflect processes related to higher-level text integration 

difficulty.   

 The data were analyzed using linear mixed-effects regression models in the lme4 package 

(Bates, Maechler, & Bolker, 2012) in R. Separate models were constructed for each reading-time 

measure. Each of these models included fixed effects of log-transformed word frequency 

(SUBTLEXus database; Brysbaert & New, 2009), word length, the Flesch-Kincaid grade level of 

the paragraph in which the word appeared (i.e., text difficulty), surprisal, entropy reduction, and 

the interactions between surprisal and text difficulty as well as entropy reduction and text 

difficulty. All predictors were mean-centered. The random-effects structures included random 

intercepts for subject, word, and paragraph, as well as by-subject random slopes for all fixed 

effects. Random slopes for the interaction terms were removed from the models because the 

models would not converge otherwise. Statistical significance was computed using the lmerTest 

package (Kuznetsova, Brockhoff, & Christensen, 2013) in R.  
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3. Results 

 We observed a moderate, positive correlation between surprisal and entropy reduction (r 

= .29, p < .001). This relationship is depicted in Fig. 1. Results of the reading-time analyses are 

presented in Table 1. Consistent with previous findings, we observed robust effects of word 

frequency and word length on all reading-time measures, such that increases in word frequency 

were associated with decreased reading times, whereas increases in word length were associated 

with increased reading times. Beyond the word-level effects of frequency and length, we also 

observed a significant main effect of text difficulty in all reading-time measures, such that 

increases in text difficulty were associated with increased reading times.  

-------------------------------Insert Figure 1 about here----------------------------- 

--------------------------------Insert Table 1 about here----------------------------- 

 Crucially, we also observed significant effects of surprisal and entropy reduction2. The 

effect of surprisal was significant across the eye-movement record, such that increases in 

surprisal were associated with increased reading times in all reading-time measures. In contrast, 

the effect of entropy reduction was only significant in the early measures of first fixation 

duration and single fixation duration, such that increases in entropy reduction were associated 

with increased reading times. The effect of entropy reduction was not significant in the later 

measures of gaze duration and regression-path duration. Fig. 2 plots the relationships between 

surprisal and entropy reduction and each of the four reading-time measures. Finally, there were 

no significant interactions between surprisal and text difficulty, nor entropy reduction and text 

difficulty in any reading-time measure. This lack of an interaction between complexity metrics 

                                                           
2 Analyses examining the effects of raw entropy on reading times revealed no significant effects in any eye-

movement measure. 
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and text difficulty held despite finding a significant positive relationship between average 

surprisal value and text difficulty (r = .72, p < .001), as well as a similar trend for a positive 

relationship between average entropy reduction and text difficulty, although this latter effect was 

not significant (r = .26, p = .11). 

-------------------------------Insert Figure 2 about here----------------------------- 

 As mentioned above, we made an a priori decision to replace cloze values of zero with 

half the value of the lowest nonzero cloze value before converting them to surprisal values (i.e., 

cloze = .0125). To ensure that our core findings did not depend on this decision, we conducted 

three sets of supplemental analyses in which all models were rerun treating values of zero cloze 

differently in each model. Specifically, Supplemental Model 1 treated zero cloze as being equal 

to the lowest nonzero cloze value (i.e., cloze = .025). Supplemental Model 2 used values that 

were two times lower than the values used in our original model (i.e., cloze = .00625), and 

Supplemental Model 3 used values that were four times lower than the values used in our 

original model (i.e., cloze = .003125). For all models, the effects of surprisal and entropy 

reduction on reading times were the same as the results reported here—that is, effects of surprisal 

emerged in all eyetracking measures, whereas effects of entropy reduction emerged in first 

fixation duration and single fixation duration. Some of the models also produced evidence of 

interactive effects between complexity metrics and text difficulty. In Supplemental Models 2 and 

3, there was an interaction between entropy reduction and text difficulty for gaze duration. In 

Supplemental Model 3, there was an interaction between surprisal and text difficulty for first 

fixation duration. These effects were all fairly weak, but the pattern for all interactions was such 

that there tended to be stronger effects of the complexity metric for easier rather than more 

difficult texts. The results of these models are available as supplementary material. 
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 To assess collinearity in our models, we computed variance inflation factors (VIFs) for 

each predictor in each model3. All VIFs were less than 2, which is well below the recommended 

limit of 10 (Cohen, Cohen, West, & Aiken, 2003). To further probe the relative contributions of 

surprisal and entropy reduction, we conducted exploratory analyses in which our primary models 

from Table 1 were rerun, once with entropy reduction removed, and again with surprisal 

removed. The results of these analyses are presented as supplementary materials. The patterns of 

effects presented in Table 1 were unchanged by these modifications. That is, the effect of 

surprisal was significant across the eye-movement record even when entropy reduction was left 

out of the model, and the effect of entropy reduction was significant in first fixation duration and 

single fixation duration when surprisal was left out of the model. 

4. Discussion 

 The current work replicates previous findings demonstrating that surprisal and entropy 

reduction both contribute to variation in reading times (Frank, 2013; Linzen & Jaeger, 2016; Wu 

et al., 2010). Importantly, however, our approach extends these findings in several important 

ways. First, our use of eyetracking as a measure of sentence processing allowed us to examine 

the time course of these effects during natural reading while avoiding the unnatural button-press 

responses associated with self-paced reading. Our results indicate that whereas increases in 

surprisal are associated with increases in reading times across the eyetracking record, increases 

in entropy reduction were only associated with increases in first fixation duration and single 

fixation duration. This pattern seems to suggest that readers experience a longer-lasting 

processing slowdown when a word in the text is unexpected, compared to when a word reduces 

uncertainty. Although the effect of entropy reduction was not significant in measures reflecting 

                                                           
3 We thank an anonymous reviewer for this suggestion. 
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later stages of processing, the overall pattern nevertheless seems consistent with the pattern 

observed in earlier measures (see Fig. 2). The fact that the effect of entropy reduction was not 

statistically significant in these later measures of processing suggests that variability in gaze 

duration and regression-path duration are better accounted for by other factors. Taken together, 

the dissociation of surprisal and entropy reduction on early versus later measures of processing 

has implications for models of eye-movement control during reading (e.g., Engbert et al., 2005; 

Reichle et al., 2003), which aim to explain the time course over which different linguistic 

properties of words influence the decision of when to move the eyes. Although complexity 

metrics like surprisal and entropy reduction have not yet been incorporated into these models, the 

dissociation in time course of processing reported here suggests that this may be a useful 

implementation.  

 In addition to testing for main effects of surprisal and entropy reduction, we also 

examined whether these measures would show different effects in easy versus more challenging 

paragraphs. Although we observed main effects of text difficulty in all reading-time measures, 

there was no indication that this factor interacted with surprisal or entropy reduction, suggesting 

that surprisal and entropy reduction effects are not limited to either the easiest or most difficult 

texts, but instead that these effects generalize across a range of paragraph difficulty levels4. The 

lack of a significant interaction suggests that our participants employed similar processes of 

linguistic prediction across texts that were very easy, as well as texts that were much more 

challenging. Thus, even though the more challenging texts contained infrequent words and 

longer, more complex sentences, readers nonetheless showed similar responses to words that 

                                                           
4 Although see supplementary material for exploratory analyses that yielded some evidence of interactions between 

complexity metrics and paragraph difficulty. 
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were relatively higher in surprisal or entropy reduction, regardless of the broader linguistic 

context. An interesting question for future research might involve examining how individual 

differences among readers in various measures of linguistic or cognitive performance could 

modulate the relationships among global text difficulty and word-by-word complexity metrics on 

reading times. 

 Whereas previous work has tended to estimate information complexity metrics from 

computational sentence parsers and other types of statistical language models, we estimated 

surprisal and entropy reduction using human predictability data in a cumulative cloze task. This 

approach has a number of advantages in that it allows us to compute complexity metrics in a 

completely theory-neutral manner, it allows us to use naturalistic sentences as opposed to the 

artificially constraining sentences that are common in studies using the traditional cloze method, 

and it allows us to study sentences in connected texts, as opposed to sentences in isolation. 

Recent work by Luke and Christianson (2016) has also used the cumulative cloze task to assess 

the relationship between lexical predictability and eye-movement measures. Our finding that 

surprisal had robust effects across the range of eye-movement measures replicates their findings. 

Although Luke and Christianson also reported several additional results, including cases of 

misprediction, they did not conduct analyses of entropy reduction. Our finding that surprisal and 

entropy reduction independently contribute to eye-movement measures during reading serves as 

a further extension of the cumulative cloze task to address important questions about the nature 

of prediction during language processing. 

 One potential downside of using the cumulative cloze procedure to estimate complexity 

metrics is that it limits the scope over which entropy reduction can be calculated. Hale’s (2003, 

2006, 2011) proposal and its implementation in computational models conceptualizes entropy as 



20 
 

the comprehender’s degree of uncertainty regarding all possible upcoming sentence structures, 

derived over multiple parse trees. In contrast, the nature of the cumulative cloze task used here 

necessitates that entropy reduction be calculated over next-word entropy as opposed to full 

entropy, given that participants only predicted the single next word of the sentence. This 

implementation of entropy reduction may explain why the effect of this metric on reading times 

was rather small, compared to the larger effects that were observed for surprisal (see Table 1). 

Nevertheless, we believe our measure of entropy reduction in the current study acts as a useful 

approximation of the sort of entropy reduction measure proposed by Hale. That is, even though 

we do not have access to participants’ predictions about the entire upcoming sentence, their 

guesses about the next word still reflect important information about how they think the sentence 

is unfolding. Specifically, as the current sentence representation becomes clearer, the range of 

potential options for the next word should narrow, leading to reduction in entropy.   

 It is also important to note that the current findings cannot distinguish confidently 

between theoretical accounts based on preactivation of a specific word before the reader 

encounters it, as opposed to accounts that instead attribute “prediction” effects to facilitated 

integration of a word with its preceding context. However, a strong version of either of these 

frameworks seems implausible in light of these findings. The notion that readers engage in 

robust, all-or-none prediction of a single word seems unlikely, given that subtle variations in 

surprisal had significant effects on reading times, even for words at the high end of the spectrum 

(i.e., words with the lowest cloze values that were rarely predicted). Likewise, a strict integration 

account seems unlikely, given that effects of surprisal and entropy reduction emerged in first 

fixation duration and single fixation duration—measures that are thought to reflect the earliest 

stages of perceptual encoding and lexical access. Thus, the results are most readily consistent 



21 
 

with the view recently put forth by Staub (2015) arguing that predictability effects in reading 

emerge from diffuse preactivation of sets of likely words in a pattern of graded activation (see 

also Ferreira & Lowder, 2016; Frisson, Harvey, & Staub, 2017; Huettig & Mani, 2016; 

Kuperberg & Jaeger, 2016; Luke & Christianson, 2016). Such a view may place serious 

constraints on the extent to which prediction can be viewed as the “engine” that drives cognition 

(Clark, 2013). 

Importantly, the current study serves to link information complexity metrics to 

mechanistic accounts of cognition in a more naturalistic way. Metrics such as surprisal and 

entropy reduction are useful in that they can be generated word-by-word according to the 

specifications of a language model, which can then be related to behavioral or neural processing 

data to assess the viability of that model (Armeni, Willems, & Frank, 2017; Brennan, 2016; Hale, 

2016). As noted above though, these metrics tend to be estimated using computational parsers or 

other statistical language models. Computational language models are associated with several 

drawbacks, one of the most serious being that they tend to assume that the sentences they take as 

their input are independent from one another. This limits the extent to which algorithmically 

derived information complexity metrics can be applied to connected, naturalistic language. In 

contrast, a major benefit of the cumulative cloze task used here is that it allows us to derive 

surprisal and entropy reduction for each word across multi-sentence, connected texts using 

human judgments. Thus, the combination of human predictability data across more naturalistic 

texts advances the goal of bridging information theory and online measures of language 

processing. 

In sum, these results demonstrate that effects of lexical predictability on reading times are 

not limited to strongly predictable versus unpredictable words that tend to appear in experiments 
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using the traditional cloze task. Instead, the cumulative cloze task used here, combined with 

analyses of data from normal reading in which every word is a potential data point, provides a 

much more accurate assessment of predictability effects in sentence processing, extending 

beyond the domain of artificially constraining stimuli. Further, the results demonstrate 

independent contributions of surprisal and entropy reduction to explaining variability in reading 

times, providing additional evidence that these information complexity metrics capture unique 

aspects of lexical predictability.  
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Table 1 
Results of mixed effects analyses   
________________________________________________________________________________________________________________ 
                             FFD                        SFD                                GZD                               RPD                     .                   
Parameters                         b        SE        t                 b       SE        t              b          SE          t            b          SE          t                   
________________________________________________________________________________________________________________ 
(Intercept)                     218.34 1.07   204.79 221.43 1.22   181.68 255.93 1.83   139.58 346.05 5.00   69.22 

Frequency                     -6.08    1.73   -3.51 -5.82 1.95   -2.98 -15.47 3.77   -4.10 -22.19 5.70     -3.89 
Length                           4.52     1.38   3.27 7.46 1.65   4.52  32.39 2.15   15.09 44.49 5.38     8.27 
Text Difficulty             2.70     0.96   2.82 3.15 0.99   3.17 4.06 1.64   2.47 10.12 4.78     2.12 
Surprisal    5.01     0.82   6.08 5.36 0.93   5.78 8.18 1.29   6.36 11.72 2.92     4.01 
Entropy Reduction   1.91     0.73   2.60 2.23 0.78   2.84 1.03 1.27   0.81 -0.06 2.77     -0.02  
Surprisal x Text Difficulty  -1.03    0.59   -1.75 -0.66 0.63   -1.04 0.87 0.93   0.93 2.86 2.22     1.29 
Entropy Reduction x Text Difficulty -0.24    0.66   -0.36 -0.64 0.71   -0.90 -2.03 1.09   -1.87 1.35 2.47     0.55 
________________________________________________________________________________________________________________ 
Note.  FFD = first fixation duration; SFD = single fixation duration; GZD = gaze duration; RPD = regression-path duration; 
statistically significant effects are indicated in boldface 
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Fig. 1. Relationship between surprisal and entropy reduction. 
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Fig. 2. Relationships between surprisal (left) and entropy reduction (right) on first fixation 
duration (a), single fixation duration (b), gaze duration (c), and regression-path duration (d). 
a. 

b. 
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